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Abstract 

In a rational and efficiently functioning market, returns on financial products that represent the same 

underlying asset should be perfectly simultaneously correlated. However, due to market imperfections, 

lead-lag relationships are a commonly observed phenomenon in traditional financial markets. This 

thesis examines price movements in a new and emerging market. Bitcoin is the oldest and most liquid 

cryptocurrency and is traded on numerous exchanges. By the use of a traditional cointegration and 

causality approach, bidirectional relationships are confirmed between all bitcoin prices tested. A 

modern high frequency approach with the use of tick-by-tick data reveals strongly asymmetric cross-

correlation functions. Some bitcoin prices follow the path of others with a time lag up to 15 seconds. 

The analysis furthermore confirms that the lead-lag relationships are affected by the rate of information 

arrival, whose proxy is the unexpected trading volume on the exchanges. Moreover, sophisticated 

investors have a more significant effect on the lead-lag relationship than non-sophisticated ones. A 

simple trading strategy is used to forecast mid-quote changes in lagging exchanges with directional 

accuracy of up to 70%. Profitable arbitrage opportunities are found by the use of an algorithm-based 

trading strategy, under the assumptions of trading at the lowest fee levels and mid-quote execution. 

Nevertheless, trading fees, price slippage and lack of liquidity are found as the most important limits 

to arbitrage. Several aspects could explain why lead-lag relationships are found. Exchange 

characteristics like infrastructure, fee structure, location and investors types are important.  

However, the analysis in this thesis points towards liquidity of exchanges as the most likely explanation. 
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1 INTRODUCTION 

In October 2008, Satoshi Nakamoto published a white paper of eight pages concerning a new peer-to-

peer payment system. Bitcoin was born, a cryptocurrency emerging from the financial crisis that put 

a shock through the financial markets during the same year. The object was simple; to make people 

financially independent from banks, governments and other third parties, through a borderless, 

decentralized currency (Nakamoto, 2008). It took almost ten years before this new asset got the 

attention of the public. 2017 was called the year of hype and bubble, with a price increase of over 

2,500% from the bottom to the top (CoinMarketCap, 2019). 2018 painted a different picture. The 

overall cryptocurrency market saw an 80% decrease throughout the year, and discussions between 

critics and bitcoin maximalists flourished. Behind all the media coverage, a new asset class in rapid 

development emerged. Significant players like the New York Stock Exchange, Microsoft, and Starbucks 

entered, with huge plans to make bitcoin and cryptocurrency accessible to the public (Dale, 2018).  

 

There is no definite solution to how bitcoin and cryptocurrencies should be valued. Some compare it 

to the tulip bubble, while others say it is the future of financial markets. Regulators and governments 

around the world both praise and ban this new market. This thesis will not discuss the technology, the 

regulations, nor the opinions of the Bitcoin community itself, but will solely study the price movements 

of bitcoin as a financial asset, with an objective and neutral approach.  

 

Bitcoin is unique. It is the first cryptocurrency and dominates over 50% of the total market 

capitalization of the cryptocurrency market. It is driven by market forces only and is traded at nearly 

90 different exchanges, against several traditional currencies and cryptocurrencies (“Bitcoin 

Exchanges”, 2019).  

 

This thesis seeks to understand how the bitcoin market behaves, by analyzing the lead-lag relationships 

across different cryptocurrency exchanges. The phenomenon of lead-lag relationships has been studied 

for decades in traditional financial markets, with new theories, approaches, and methods evolving with 

the technological improvements of trading. High frequency trading and algorithm-based methods have 

pushed academics to approaches that study movements down to milliseconds.  
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Today, the largest cryptocurrency exchanges are highly efficient with minimal arbitrage opportunities 

of the bitcoin price itself (Bitwise Asset Management, 2019). Is this the case for the movements of the 

bitcoin price as well, or are some exchanges leading the price movements of bitcoin? 

 

1.1 RESEARCH QUESTIONS 

This evolvement, in addition to the discussion above results in the following research question for this 

thesis: 

As a globally traded, borderless cryptocurrency, how are the price movements of bitcoin 

on different exchanges connected, and what can explain potential differences? 

 

In order to answer this question, a series of sub-questions are formed. 

• What kind of lead-lag relationships are found between the most efficient exchanges? 

• How are lead-lag relationships affected by information arrival through unexpected 

volume changes? 

• To what extent can arbitrageurs take advantage of the possible lead-lag relationships? 

• Which exchange characteristics are possible explanations of lead-lag relationships? 

 

This thesis will study the bitcoin price on different cryptocurrency exchanges and try to understand 

why price movements fluctuate differently across them. The thesis’ structure is as follows: 

 

Section 2 presents the findings of academic literature and set the foundation for the theoretical 

approach of the thesis. Section 3 presents the theoretical frameworks that are relevant to this study. 

In Section 4, the methodology will be presented and describes the approaches that will be used in the 

analysis. Furthermore, it describes the research design, data collection, preparation, and limitations. 

Section 5 describes the data used in the analysis. Section 6 consists of the data analysis. The analysis 

includes descriptive statistics, two different approaches to lead-lag relationships, a study on the effect 

of information arrival and trading strategies based on the findings. Section 7 consists of a profound 

discussion of lead-lag relationships and a future perspective. Finally, Section 8 concludes and 

summarizes the research question and its sub-questions. 
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2 LITERATURE REVIEW  

2.1 LEAD-LAG RELATIONSHIPS 

Several studies have been done on the lead-lag relationships between assets. However, studies exploring 

these relationships in the cryptocurrency market are minimal. Most studies focus on the equity market, 

which can be divided between studies on equities in the same country and between countries. 

Furthermore, studies on lead-lag relationships in the same country focus on related securities and 

unrelated securities. Related securities are normally spot markets and derivatives instruments, and 

unrelated focuses on different stocks. This thesis will study the lead-lag relationship of bitcoin prices, 

which represent the same asset. Hence, the presented literature will be related to lead-lag relationships 

on related securities. These are normally studies on the relationship between spot and futures markets. 

Spot and futures have been studied for a long time. Several studies show that the relationship is 

bidirectional. Chiang and Fong (2001), Nam et al. (2006) and Ergün (2009) confirm a bidirectional 

relationship, where the leadership of the futures is both stronger and over a longer time period. Kawaller 

et al. (1987) found that futures lead spot markets by up to 45 minutes. Results where spots lead futures 

have also been found, by up to 15 minutes in Chan (1992).  

 
These relationships are commonly explained by a couple of different factors. Both Shyy et al. (1996) 

and Brooks et al. (1999) describe the relationship by infrequent and non-synchronous trading. However, 

Stoll and Whaley (1990), Grünbichler et al. (1994), Martikainen et al. (1995), and Fleming et al. (1996) 

argue that these implications can be corrected for. Their results showed lead-lag relationships, even 

after considering these troubling trading patterns. Others focus on the cost of trading as the main 

reason. Martikainen et al. (1995) and Fleming et al. (1996) argue that trading of an index is cheaper 

in derivate markets than in spot markets. Hence, new information updates faster there and show that 

these markets lead spot markets. Chen and Gau (2009) show that spot markets will contribute more 

to this price discovery when the bid/ask spread is smaller, and the minimum tick size decreases. 

Furthermore, Grünbichler et al. (1994) indicate that the trading mechanism is an important factor. 

They conclude that futures lead spot markets when they are screen-traded, since the price discovery 

speed increases. 

 

Nam et al. (2008) do not recommend using low-frequency data, as this can lead to information loss and 

incorrect results. This recommendation will be followed in this thesis, as technology has improved and 
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lead-lag time has been reduced dramatically. Huth and Abergel (2012) use the model of Hayashi and 

Yoshida (2005), which uses the original tick data and does not require any modifications such as 

interpolation or resampling. They confirm that the most liquid assets tend to lead, especially in the 

setting of futures and stocks. Dao et al. (2018) use the same approach, extended by Hoffman et al. 

(2013), and include a study on the effect of information arrival on the lead-lag relationships. Their 

study concludes that unexpected trading volume affects the lead-lag relationships.  

 

Brooks et al. (2001) use lead-lag relationships for accurate forecasting. However, trading on these results 

did not yield profits that outperformed the benchmark due to trading fees. This is furthermore 

confirmed in the high frequency environment, where both Huth and Abergel (2012) and later on 

Alsayed and McGroarty (2014) point toward trading fees and bid/ask spreads as limits to arbitrage. 

 

2.2 CRYPTOCURRENCY 

Only a few have studied the behavior of bitcoin on different cryptocurrency exchanges. Brandvold et 

al. (2015) use theory on information share to address the fraction of price discovery that happens on 

different bitcoin exchanges. They concluded that larger exchanges provide more information to the 

market and that smaller exchanges usually follow the market with a time lag. Bariviera (2017) and 

Phillip et al. (2018) found long memory in the bitcoin volatility. Catania and Sandholdt (2019) studie 

high frequency returns of bitcoin on two of the largest cryptocurrency exchanges. They present results 

of an intra-daily seasonality pattern and abnormal trade and volatility intensity close to the weekend. 

Furthermore, they found predictability for sample frequencies for up to six hours. Eross et al. (2017) 

found that volume, bid-ask spread, and volatility have n-shaped patterns throughout the day which 

suggests that European and North American traders are the main drivers of bitcoin trading and 

volatility. Urquhart (2016) concludes that bitcoin is in an inefficient market, but may be in the process 

of moving towards an efficient market. Nadarajah and Chu (2016) followed up on this study and 

showed that power-transformed bitcoin returns could be weakly efficient. 

 

To my knowledge, this thesis contributes to the growing literature on bitcoin by being the first to 

study the high frequency lead-lag relationships between the most efficient cryptocurrency exchanges, 

and how information arrival affects these relationships. 
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3 THEORETICAL FRAMEWORK  

This section will provide a detailed description of important topics addressed in this thesis. It is crucial 

for the reader to understand the concept of bitcoin and cryptocurrency exchanges, alongside theories 

on lead-lag relationships. Furthermore, efficient markets theory is included to touch upon the concept 

of arbitrage. This section will give the reader an essential fundament for understanding the analysis 

and discussions later in the thesis. 

 

3.1 BLOCKCHAIN & BITCOIN 

3.1.1 BLOCKCHAIN TECHNOLOGY 

To understand the concept of Bitcoin, and cryptocurrency in general, some basic knowledge of the 

underlying technology is needed. During the financial crisis, when trust in businesses in the financial 

sector was at an all-time low, this new technology emerged. This solution made it possible to transact 

without the need for third-party intermediaries, proposed by an unknown actor with the pseudonym 

Satoshi Nakamoto (2008). This means that the typical approach of making transactions through a 

trusted middleman, like a bank, becomes theoretically unnecessary. A common definition describes 

blockchain as a distributed, decentralized, public ledger. Extremely simplified, one can imagine a chain 

of blocks. These blocks are digital information, stored in a public database that is the chain. As 

presented by Tasca & Tessone (2019), blockchain will be explained by looking at the fundamental 

principles; data decentralization, transparency, immutability, and privacy. 

 

On a blockchain, the distributed nature of the network requires untrusted participants to reach a 

consensus. This kind of consensus is based on a set of rules. This can be what kind of transactions that 

are allowed, specifications on the block reward on mining difficulty, or details on transactions history 

that let participants review ownership of transactions. The distributed ledger updates when consensus 

is reached by the participants in the network. These participants are local nodes that independently 

verify transactions, making the process completely decentralized. In other words, due to this consensus 

mechanism, there is no need for a centralized third party. Transactions are done without a trusted 

authority who verify these or set the rules. The ledger of transactions is entirely open and accessible 

to a predefined set of participants. On public blockchains, like Bitcoin, everyone holds equal rights and 

ability to access. This means that anyone that is interested in the transactions on the blockchain can 
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go through this, whenever they want. This specification makes the blockchain totally transparent, and 

equally important, traceable. 

 

Without elaborating too much on the technical details, the one-way cryptographic hash functions are 

essential to address. This is the base immutability. These hash functions take a variable-length input 

string (pre-image) and convert it to a fixed-length output string, a so-called hash value. This makes it 

exceptionally computationally challenging to calculate an alphanumeric text that has a given hash. 

Moreover, this makes the hash function collision-free: It is hard to generate two pre-images with the 

same hash value (Schneier, 1996). This means that the records on the blockchain are irreversible, 

indicating that recordings in the ledger are tamper-proof. When transactions are done, private keys 

possessed only by the sender are used to make signatures for the transactions. This makes the 

transaction tamper-proof since the signatures are being used to confirm that the transaction has come 

from the sender. By the specifications given in this section, blockchains are shared, tamper-proof, 

replicated ledgers where records are irreversible and cannot be forged (Tasca & Tessone, 2019) – making 

them relatively secure.  

 

3.1.2 THE HISTORY OF BITCOIN 

The Bitcoin blockchain follows the specifications of blockchain technology, and the cryptocurrency 

bitcoin is the unit of account, which describes the transactions on the Bitcoin blockchain. As mentioned 

in the introduction to this section, the Bitcoin blockchain was established in 2008. The next year, the 

first bitcoin block was mined and marked the birth of the cryptocurrency bitcoin. This included a text, 

which clearly expressed that the birth of Bitcoin was related to the financial crisis: “The Times 

03/Jan/2009 Chancellor on brink of second bailout for banks”. This is the text from the front page of 

The Times, 3rd of January 2009 (Jenssen, 2019). The fact that the blockchain and the cryptocurrency 

have the same name can be confusing. This thesis will refer to the blockchain as “Bitcoin” and the 

cryptocurrency as “bitcoin”. That is, with and without a capital letter. 

 

On the Bitcoin blockchain, new transactions are compiled into a new block every 10 minutes and sent 

to the Bitcoin network for confirmation. The blocks are secured based on a proof-of-work concept. This 

basically means that participants in the network, “miners”, utilize computational power to solve the 

hash related to the block. This will not be explained in detail due to the scope of this thesis, but Franco 
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(2015) can be used to get a deeper understanding. As this proof-of-work algorithm is both extensive 

and requires a lot of computational power, “miners” are rewarded with bitcoin for their effort. This 

reward has throughout the years systematically declined and will continue this way until the maximum 

amount of bitcoin has been mined. When the maximum amount of 21 million bitcoin are mined, the 

“miners” will only be rewarded trough transaction fees (Jenssen, 2019).   

 

Figure 3.1 - Price chart of bitcoin (BTC) 2009-2019 on a log-scale, indicating the percentage change. 

The price of one bitcoin has seen several periods with a significant increase. It increased rapidly at the 

end of 2010 and reached $1 in February 2011. As seen in Figure 3.1, the price continued rising to over 

$20 during the spring of 2011. The next rapid increase that came during the first months of 2013, was 

a surge from around $10 to over $150 was seen. Yet again, during the last months of 2013, the price 

increased 10 times from $100 to over $1,000. While falling down to just above $200 in 2014 and most 

parts of 2015, the price started growing again in 2016. From the beginning of 2017, media really started 

covering cryptocurrency and the year saw the price rise from around $1,000 to over $19,000. As seen 

several times during bitcoins lifetime, the price once again took a tumble in 2018 and ended the year 

just below $4,000. As of May 2019, the price is just below $8,000 (CoinMarketCap,2019). 

 

3.2 CRYPTOCURRENCY EXCHANGES 

The function of cryptocurrency exchanges and how they work compared to traditional stock exchanges 

are essential to investigate. This section will explain some key differences and look at the development 

of cryptocurrency exchanges since bitcoin’s birth. First of all, cryptocurrencies are normally traded on 

a large number of exchanges. Bitcoin, as the leading cryptocurrency, is traded on nearly 90 different 

exchanges ("Bitcoin Exchanges", 2019). This is quite different from stocks, which normally are traded 

on one exchange only. The fact that cryptocurrency markets never close is also a significant difference 
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from stock markets. Regular opening hours are generally during working hours and not during the 

weekends. This leads to news happening outside of trading hours, which is not the case in 

cryptocurrency markets. Furthermore, trading fees on cryptocurrency exchanges are normally high 

compared to stock markets. There is a common misunderstanding that trading cryptocurrency is cheap 

because they are easily transferable and globally accessible through blockchains. However, 

cryptocurrency exchanges have high fees and profit a lot on these fees (Babayan, 2019). 

 

The process of opening stock trading accounts can be challenging, with thorough procedures. Many 

cryptocurrency exchanges are easy to access, without requirements. Although this could be favorable 

for users, it could come with a lot of risks. Regulations are on the rise in many countries, and anti-

money laundering regulations with stricter KYC procedures are coming ("Regulation of Cryptocurrency 

Around the World", 2018). Furthermore, cryptocurrency typically has a limitation on supply. Bitcoin 

is capped at 21 million and will not be adjusted. Stocks do not have this kind of restriction imposed, 

and a company can at any time issue more stocks. Moreover, the unregulated nature of cryptocurrency 

makes market manipulation possible. Markets often face low liquidity, and so-called “pump and dump” 

schemes are a well-known problem (Xu & Livshits, 2018). Several exchanges have also experienced 

brutal hacks, resulting in billions of dollars stolen. One of the most used cryptocurrency exchanges in 

the history of bitcoin, Mt. Gox, was hacked in 2014. This will be addressed later in this section. Clearly, 

the risk of cryptocurrency trading is different from stock trading. However, the market of 

cryptocurrencies is still young, and risk, volatility, and varying liquidity is a natural consequence. 

 

Lastly, cryptocurrency exchanges typically have a slight price mismatch. Several models for valuing 

both bitcoin and other cryptocurrencies have been made. There are different opinions on the 

fundamental values and on the fact that speculation is the only driver of the prices. This is outside the 

scope of this thesis and will not be addressed further. With a variety of specifications that may affect 

the bitcoin price on different cryptocurrency exchanges, this leads to clear price differences. The size 

of the exchange, trading volume and the currency pairs that the cryptocurrency is traded against, are 

some factors. The price differences are usually just a couple of dollars on the most liquid bitcoin 

exchanges, which is around 0.1%-0.2%. However, some exchange prices are several hundred dollars 

away from the mean market price, normally due to other currency pairings to bitcoin, low liquidity or 

capital restrictions ("Bitcoin Markets Arbitrage Table", 2019). 
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As already mentioned, Mt. Gox was the market leading cryptocurrency exchange for many years. 

During the years 2010, 2011 and 2012, the exchange had a market share of more than 80%. This started 

decreasing as the bitcoin price surged in the first quarter of 2013. Diversification of the exchange market 

started, and several exchanges appeared. These specialized in different traditional currencies and other 

cryptocurrency pairings to bitcoin. During 2013, actors like Bitfinex and Bitstamp, which are well 

known today, started taking market shares from Mt. Gox. Already during the last half of 2013, Mt. 

Gox users faced issues with withdrawals. On February 7th, 2014, Mt. Gox halted all bitcoin withdrawals. 

The exchange filed for bankruptcy only a couple of weeks later, after news and rumors emerged. The 

exchange allegedly lost about 850,000 bitcoins in a hack, corresponding to over $450 million at that 

time (Dougherty & Huang, 2014). Since this, the exchange market has exploded. There are now over 

200 exchanges and over 2100 cryptocurrencies, and bitcoin’s dominance in market capitalization has 

decreased from over 90% in 2014 to around 50% as of March 2019 (CoinMarketCap, 2019).  

 

3.3 EFFICIENT MARKETS  

The Efficient Market Hypothesis was formulated by Fama (1970). This hypothesis is based on the fact 

that stock prices follow a random walk, which Fama (1965) was unable to reject in a study on serial 

correlation conducted on American stock prices. When trying to generate higher profit by the use of 

mechanical trading strategies, results showed that these did not outperform a standard buy-and-hold 

strategy. This led the way for the Efficient Market Hypothesis. The hypothesis states that if successive 

stock prices truly are independent, this will suggest that stock prices are efficient and absorb and reflect 

all available information as it reaches the markets. This is also true for financial securities markets 

where stocks are the underlying asset. This means that the price of the security should be an unbiased 

estimate of the underlying asset, thanks to the information efficiency (Fama, 1970). 

 

The Efficient Market Hypothesis can be divided into three different levels that describe how efficient 

the market is. These three levels are based on assumptions on how much information that is available 

and reflected in prices of traded assets. The weak form of market efficiency describes a situation where 

all historical information is reflected in the current price. The semi-strong form means that prices 

reflect all historical information and all publicly available information. Lastly, the strong form of market 

efficiency should reflect private information in addition to public and historical information (Fama, 

1970). As the Efficient Market Hypothesis implies that stocks and financial securities are traded at a 

fair price, there should not be any possibility for arbitrage in efficient markets. This suggests that there 
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is no possibility for excess return in the market, without taking additional risk. As there is no arbitrage 

opportunity, the law of one price occur. This states that the price of an identical security traded 

anywhere should have the same price. If not, an arbitrageur could purchase the security cheaper in one 

market and sell it in the market where the price is higher to make a profit. When the law of one price 

does not hold, the arbitrageur will use this opportunity until the price converges across markets 

(McDonald et al. 2006). However, this law does not always hold in practice, as there is often significant 

transaction cost, barriers to trade and other trade restrictions that apply. This is clearly seen in the 

cryptocurrency market. As described earlier, the price of bitcoin is not consistent, and some exchanges 

deviate in price with several hundred dollars. As the price of one bitcoin does not have any direct way 

to be calculated, except the amount the next buyer is willing to pay, it is difficult to maintain a 

symmetric market at all the different exchanges. Furthermore, barriers to enter exchanges, trading 

fees, transaction time, and other relevant factors will affect the price on each exchange. Some people 

say that these price differences create arbitrage opportunities across exchanges. However, time is a 

relevant factor, as moving bitcoins across exchanges is often quite slow. This time risk is especially 

relevant in this market, where the bitcoin price is very volatile. 

 

3.4 STATIONARITY  

For the analysis in this thesis, it is crucial to the familiar with the concept of stationarity. Hence, the 

difference between stationary and non-stationary time series, in addition to strict and weak stationarity, 

will be explained in this section. Brooks (2008) defines a time series as strictly stationary if the 

probability of its values does not change over time: 

𝑓𝑓(𝑦𝑦𝑡𝑡 ,𝑦𝑦𝑡𝑡+1, … ,𝑦𝑦𝑇𝑇) = 𝑓𝑓(𝑦𝑦𝑡𝑡+𝑘𝑘 ,𝑦𝑦𝑡𝑡+1+𝑘𝑘, … ,𝑦𝑦𝑇𝑇+𝑘𝑘) 

This strict kind of stationarity suggests that all higher-order moments are constant, including mean 

and variance. Nevertheless, these kinds of times series are rarely found, and strict stationarity is 

therefore not common. It is more common to use the concept of weak stationarity. When a time series 

show constant mean, variance and autocovariance over time, it is said to be a weakly stationary process. 

These process assumptions are sufficient to call a time series stationary. A time series is called non-

stationary if its properties change over time. The variance of a non-stationary process will increase as 

the sample size moves toward infinity (Enders, 2008). A simple autoregressive process can be used to 

explain stationarity: 

𝑦𝑦𝑡𝑡 = 𝜙𝜙𝑦𝑦𝑡𝑡−1 + 𝑢𝑢𝑡𝑡 
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This model shows that the variable 𝑦𝑦𝑡𝑡 have no drift and depends on the lagged value 𝑦𝑦𝑡𝑡−1 and the 

error term 𝑢𝑢𝑡𝑡. The value of 𝜙𝜙 indicates of the time series process is stationary or non-stationary. Three 

possible values of 𝜙𝜙 can occur (Brooks, 2008): 

1) 𝜙𝜙 < 1 ⇒ 𝜙𝜙𝑇𝑇 → 0 𝑎𝑎𝑎𝑎 𝑇𝑇 → ∞ 
In this case, a shock to the system is temporary and will gradually die away. This is called a 

stationary process.  

2) 𝜙𝜙 = 1 ⇒ 𝜙𝜙𝑇𝑇 = 1 ∀ 𝑇𝑇 
In this case, shocks persist in the system and never die away. This means that the current value 

of 𝑦𝑦 is just an infinite value sum of past shocks, in addition to the starting value 𝑦𝑦0. This case 

is also called the unit root case and is regarded non-stationary, since the variable 𝑦𝑦  contains 

a unit root. 

3) 𝜙𝜙 > 1 
In this case, the shocks will become more influential as the time series moves on, because if 

𝜙𝜙 > 1, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝜙𝜙3 > 𝜙𝜙2 > 𝜙𝜙, 𝑒𝑒𝑡𝑡𝑒𝑒. This is also a non-stationary process and is called the explosive 

case and is not common. Hence, 𝜙𝜙 = 1 is normally used to describe non-stationary. 

 

Figure 3.2 shows two different processes. This illustration gives a better overview of the concept of 

stationarity. The time series to the left shows a non-stationary I(1) process, with a non-zero mean 

which indicates that 𝜙𝜙 = 1. The time series to the right shows a stationary process, hence 𝜙𝜙 < 1. The 

time series which is stationary return to its mean value throughout the time period. 

 

Figure 3.2 - Non-stationary / Stationary process 

When working with time series, it is important to be aware of non-stationarity. False regression result 

can occur in a model with non-stationary variables, which can be misleading in an analysis. The 𝑅𝑅2, 

which shows how much of the variation in the dependent variable that can be explained by the 

independent variables, can be unusually high. This high value of 𝑅𝑅2 indicates a relationship between 

two independent, random variables, when there in reality is no significant relationships between these 
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two (Granger & Newbold, 1974). A time series that is non-stationary, needs to be differenced 𝑑𝑑 times 

before it becomes stationary. After that, the time series is said to be integrated of order 𝑑𝑑. The number 

of unit roots, i.e. the order of integration, decides the number of differences (𝑑𝑑) to make the time series 

stationary. This can be written as 𝑦𝑦𝑡𝑡~𝐼𝐼(𝑑𝑑), where 𝑑𝑑 ≥ 1. Moreover, a stationary time series can be 

written 𝑦𝑦𝑡𝑡~𝐼𝐼(0), since it is integrated by order 0 (Brooks, 2008). 

 

3.5 LEAD-LAG RELATIONSHIP 

As the efficiency of financial markets can be questioned, several studies have been conducted on the 

lead-lag relationships of different financial securities and assets. Section 3.3 explained the different 

levels of market efficiency. If some markets are more efficient than others and absorb and reflect 

available information faster, it should theoretically be possible to find leading and lagging price 

movements between markets. This section will describe some of the different theories that explore these 

relationships.  
 

3.5.1 COINTEGRATION 

Cointegration was first presented by Engle and Granger (1987) and is often confused with correlation. 

Correlation is perhaps the term people are most familiar with and measures how well two variables 

move in tandem with each other. That is, a measure between -1 and 1 which determine if the variable 

move in tandem in the same direction or opposite directions. A positive correlation means that the 

variables move in the same direction, and negative correlation suggests that the variables move in 

opposite directions. Studies show that highly correlated variables often are cointegrated as well, but 

this is not always the case. This is because cointegration measures whether the difference between the 

variables’ means remains constant, and not how well they move together (Kammers, 2017). More 

specifically, Engle and Granger (1987) define cointegration as a shared stochastic trend in the long-run 

between two variables. Given two non-stationary variables {𝑥𝑥,𝑦𝑦} that is integrated of order one (i.e. 

{𝑥𝑥,𝑦𝑦}~𝐼𝐼(1)), and there is a linear combination of the two variables that is stationary (I(O)), these 

variables are said to be cointegrated (Brooks, 2008). A regression model of two non-stationary I(1) 

variables 𝑦𝑦𝑡𝑡  𝑎𝑎𝑒𝑒𝑑𝑑 𝑥𝑥𝑡𝑡 can be written as: 

𝑦𝑦𝑡𝑡 = 𝜇𝜇 + 𝛽𝛽𝑥𝑥𝑡𝑡 + 𝜇𝜇𝑡𝑡 

Given the residuals  𝜇𝜇𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝛽𝛽𝑥𝑥𝑡𝑡 the variables 𝑦𝑦𝑡𝑡  𝑎𝑎𝑒𝑒𝑑𝑑 𝑥𝑥𝑡𝑡 are said to be cointegrated if this error term 

is stationary,  𝜇𝜇𝑡𝑡~𝐼𝐼(0). 
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Theoretically, cointegration should only exist between variables that have a true relationship (Asteriou 

& Hall, 2007). This is the case for financial products like stocks and futures, that are based on the 

same underlying asset. In addition, bitcoin which is traded on several exchanges should indeed follow 

the theoretical concept of cointegration. Engle and Granger (1987) were the first to establish models 

for testing the relationship between variables that are cointegrated, including error correction models 

(ECM). These ECM’s use both the lagged and the first-differenced levels of the variables. Hence, the 

models explore both the short-term relation and the long-term relation between the cointegrated 

variables (Brooks, 2008). Section 4.7 will give a detailed explanation of how cointegration can be tested. 

 

3.5.2 GRANGER CAUSALITY  

Already in 1969, Granger presented the concept of Granger causality. This is used to established 

causality between two variables and empirically testing the direction of this causality when it is 

assumed that two variables are related. The direction of the causality can be unidirectional or 

bidirectional. When two variables are unidirectional, one of the variables are said to Granger cause the 

other. More specifically, variable 𝑥𝑥𝑡𝑡 is said to Granger cause 𝑦𝑦𝑡𝑡 if it can be shown that lagged values 

of 𝑥𝑥𝑡𝑡 will improve the forecast of 𝑦𝑦𝑡𝑡. That is, lagged values of 𝑥𝑥𝑡𝑡 will provide statistically significant 

information about future values of 𝑦𝑦𝑡𝑡. Furthermore, the word causality should not be interpreted as 

how movements of one variable cause the movement of another variable. Causality refers to a 

correlation between the current values of one variable and the lagged values of another variable 

(Brooks, 2008). Figure 3.3 illustrates an example where time series 𝑥𝑥𝑡𝑡 Granger causes time series 𝑦𝑦𝑡𝑡. 

The patters in 𝑥𝑥𝑡𝑡 are approximately repeated in 𝑦𝑦𝑡𝑡 after a given time lag, which is shown by the arrows. 

Hence, past values of 𝑥𝑥𝑡𝑡 can be used for the prediction of future values of 𝑦𝑦𝑡𝑡 (Liu & Bahadori, 2012). 

 

Figure 3.3 - Illustration of Granger causality, regenerated from Liu & Bahadori (2012). 

As this thesis look at the same asset at different exchanges, Granger causality between these time series 

will be examined. The method for this test will be presented in detail in Section 4.7.4.  
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3.5.3 HIGH FREQUENCY HAYASHI-YOSHIDA CROSS-CORRELATION 

As the technology of financial markets evolves, new approaches and theories are established. As a result 

of advanced computational power in recent decades, data can be collected at an extremely fine scale. 

When data is available down to milliseconds, new approaches and challenges occur when dealing with 

time series and econometrics in general (Engle, 2000). This section will dive into the details of a more 

modern approach to lead-lag relationships. Hayashi & Yoshida (2005) were the first to present this 

method, which focuses on data collected “tick-by-tick”, and not time intervals. This means that the 

data is not divided into time intervals of seconds, minutes or hours, but includes every single 

observation. To put this in perspective; high frequency data collected from one day in a liquid market 

can equal the amount of daily data collected for over 30 years (Dacorogna, 2001). 

 

Hayashi & Yoshida (2005) describes the process of estimating the covariance of two diffusion processes 

when they are observed only at discrete times in a non-synchronous manner. This can, for example, be 

a stock price or foreign exchange rate, where the variable changes on a random and continuous basis. 

Previous studies use a popular approach of realized covariance estimation, which is based on regular 

spaced, synchronous data. Andersen et al. (2001) look at realized exchange rate volatility and 

approximate the quadratic variation and covariation directly from high frequency data. Basically, they 

use quadratic variations as estimators of variances and covariances of multivariate security price 

processes. These discrete observations of two security prices, �𝑃𝑃𝑡𝑡𝑖𝑖
1  𝑎𝑎𝑒𝑒𝑑𝑑 𝑃𝑃𝑡𝑡𝑖𝑖

2�
𝑖𝑖=0,1,…,𝑚𝑚

 of size 𝑚𝑚 + 1, are 

Itô processes, or so-called continuous time Itô semi-martingales where 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇.   

The covariation 𝑉𝑉 ≔ 〈𝑃𝑃1,𝑃𝑃2〉𝑇𝑇 of the two processes, also called the realized covariance estimator, is 

then defined in the following way by Andersen et al. (2001): 

𝑉𝑉𝜋𝜋(𝑚𝑚) ≔��𝑃𝑃𝑡𝑡𝑖𝑖
1 − 𝑃𝑃𝑡𝑡𝑖𝑖−1

1 ��𝑃𝑃𝑡𝑡𝑖𝑖
2 − 𝑃𝑃𝑡𝑡𝑖𝑖−1

2 �
𝑚𝑚

𝑖𝑖=1

 

Usually, equally spacing is chosen, so that 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 = 𝑇𝑇
𝑚𝑚

 (=:ℎ) for each 𝑖𝑖. 

 

Hayashi & Yoshida (2005) point out two important implication of this realized covariance estimator. 

First of all, high frequency transaction data are recorded at random times. This means that two 

transaction prices are rarely observed at the same specific time, which the formula above asume. 

Secondly, some parts of the original transaction data will be missing if prespecified grid points are set, 

due to these random transaction times. Prespecified grid points can be time intervals of length ℎ, i.e., 
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second or minutes, which is necessary when using the formula given above. Hence, imputation or 

interpolation of the missing observation in these prespecified time intervals. This is problematic 

according to Hayashi & Yoshida (2005), because regular time intervals and data interpolation schemes 

may lead to unreliable estimations. In addition, this realized covariance estimator depends heavily on 

the choice of time interval length, ℎ. Hence, they propose a new approach that is free from any 

adjustments of the original data. This leads to data that is free of bias and other problems related to 

synchronization processes. The Hayashi-Yoshida covariance estimator will be explained in detail in 

Section 4.8. 

 

3.5.3.1 THE EPPS EFFECT 
In relation to high frequency data, it is relevant to include a phenomenon called the Epps effect. Epps 

(1979) reports empirical evidence of how sampling frequency on high frequency stock returns will affect 

correlation estimators. He discovered that the empirical correlation between the returns of two different 

stock decreases with the length of the interval for which price changes are measured (Epps, 1979). That 

is, the correlation decreases when the sampling frequency increases. This effect has been studied for 

decades, and considerable effort has been used to explain the phenomenon found by Epps. Several 

factors have been found to explain the effect. However, the most important factor is related to the non-

synchronicity of time series, as is present for raw transaction data. Empirical results show that data 

where only synchronous ticks are included, i.e., equal time intervals for two variables, clearly reduces 

the degree of the Epps effect (Toth & Kertesz, 2009). This effect is highly relevant for this thesis, as 

the method of Hayashi & Yoshida (2005) deals with high frequency data. Hence, the estimation of the 

true lead-lag relationships will be more accurate, but this will clearly reduce the true correlation. 

 

3.5.4 DISCUSSION 

Section 2.1 presented a range of different studies on lead-lag relationships. It would be optimal to study 

several approaches to these relationships. However, this thesis narrows down to two main approaches. 

When choosing which approaches to focus on, several aspects have been considered. Presented in this 

theory section, are approached that are normally used on different kind of datasets. That is, we operate 

with both high frequency data and data sorted in low frequency time intervals. By using a general and 

well-known approach to cointegration with the use of Granger causality, a good overview of the 

empirical facts is established. This will provide indications on how the bitcoin price behaves on the 

different exchanges. Not necessarily detailed results that can be used in a potential trading strategy, 
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but helpful results when a decision should be taken on what interesting aspects that should be explored 

further. If Granger causality is found between certain exchanges, further analysis can then be done 

with the above-mentioned theory of Hayashi and Yoshida (2005). This approach focuses on high 

frequency transaction data, and would hopefully be able to provide new results in the study of the 

lead-lag relationship between certain exchanges. 

 

When using such different approaches, interesting results will hopefully occur. This could be related to 

the fact that high frequency data reveal totally different lead-lag relationships than data frequencies of 

for example minutes. Contrary, this could be results that strengthen the already found results. However, 

the point of this discussion is to clarify the use of more than one approach to lead-lag relationships. 

Interesting observations can be done with a classic cointegration approach, and the Hayashi-Yoshida 

estimator is a tool to identify relationships that a traditional approach cannot do. This way, the 

complete analysis will give a solid foundation to make a conclusion about the lead-lag relationships of 

the bitcoin price on different exchanges. 

 

3.6 INFORMATION ARRIVAL  

Lead-lag relationships have been studied for a long time, and that also includes research on what factors 

that affects this relationship. Earlier, studies looked at trading costs and trading mechanisms of the 

financial instruments that showed lead-lag relationships. Research shows that trading cost is important 

since information, i.e., the price, is updated faster where trading is cheaper. The fact that trading of 

an index is cheaper in a derivate market than in a spot market suggests that information arrives earlier 

in the derivate market. Hence, the price is updated in the derivate market before the spot market 

(Martikainen & Perttunen, 1995). Furthermore, Fleming et al. (1996) show that there is no lead-lag 

relationship between put and call options because they have the same type of trading cost structure.  

 

When evaluating the trading mechanism of the financial instruments, another interesting aspect is 

found. An example can be a situation where two financial instruments are both floor-traded. Floor-

trading is based on the physical interaction between people who buy and sell, using a so-called open 

outcry method. This kind of trading involves people who shout and use hand signals to transfer 

information about buy and sell orders (Shell, 2007). If one of the two financial instruments change 

trading mechanism to a more modern approach, this clearly influences the lead-lag relationship. When 
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a leading financial instrument improves from being floor-traded to being screen-traded, the lead-lag 

relationships strengthens significantly (Grünbichler et al. 1994). This is an intuitive observation since 

the speed of information arrival is on an entirely different level when the financial instruments are 

screen-traded.  

 

The two factors that affect the lead-lag relationship mentioned above are not that relevant for the 

research in this thesis. When the price of bitcoin is evaluated, this only includes electronically traded 

prices and spot instruments. Hence, no derivatives are considered, nor different trading mechanisms. 

Naturally, one would assume the same level of trading costs across similarly spot prices on different 

exchanges. The cryptocurrency markets and exchanges operate with differences in trading costs. 

However, these are minimal and vary among individual traders. Hence, it will not be included when 

the effect of information arrival on the lead-lag relationships are analyzed in Section 6.2.3. 

 

3.6.1 TRADING VOLUME 

Dao et al. (2018) studied the information flow in trading volume to the market and the lead-lag 

relationship between high frequency spot instruments. They base this on the fact that the lead-lag 

relationship exists because some instruments reflect information faster than others, and the fact that 

information is important in financial markets. Trading volume has been shown to explain some aspects 

of information arrival to financial markets (Arago & Nieto, 2005). In addition, traders that provide 

volume to the market are not alike. One can differentiate so-called sophisticated investors from non-

sophisticated investors. Sophisticated investors can also be called institutional investors, and they 

usually provide trades of a large number of shares or value (Madhavan & Sofianos, 1998). 

 

Furthermore, this form of information arrival can be even more precisely explained when analyzing 

what affect the lead-lag relationship. Arago & Nieto (2005) point out that the expected and unexpected 

volume flow to the market should be researched. Here, the expected volume is said to capture the 

normal level of market activity, and the unexpected volume captures the arrival of new information to 

the market. Trading volume is easily observable across cryptocurrency exchanges, and the theory in 

this section shows its importance in relation to the lead-lag relationship. Thus, this will be elaborated 

on later in the thesis when the effect of information arrival is analyzed in Section 6.2.3. 
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4 METHODOLOGY 

This section elaborates on how the research is conducted and how the data that is collected, in addition 

to the approaches used in the analysis. Most data handling, calculations and testing have been done 

with the Anaconda Spyder software, using the programming language Python. Several open-source 

Python packages have been downloaded, and Arcane Crypto AS has contributed with both server 

capacity and development of certain codes. 

 

4.1 RESEARCH PHILOSOPHY AND APPROACH  

This thesis seeks to explore the high frequency lead-lag relationships between bitcoin prices on different 

exchanges. Specifically, the purpose is to investigate the correlations in the increasingly liquid bitcoin 

market. However, this relatively new asset class does not show the same liquidity levels as traditional 

financial markets. This leads to the uncertainty of efficient markets and raises questions about arbitrage 

opportunities. Evaluating the price movements across several cryptocurrency exchanges, allow a deeper 

understanding of the lead-lag relationships. 

 

4.2 RESEARCH DESIGN  

Due to the aim of this thesis and inadequate existing academic literature on high frequency lead-lag 

relationships of the bitcoin price, an exploratory research design is applied. Although existing academic 

literature on lead-lag relationships is intuitively applicable for this thesis, this will to my knowledge be 

the first study on bitcoin. Hence, an exploratory design is suitable, since there are no earlier studies to 

rely upon to predict an outcome (USC Libraries, 2019). Due to the quantitative nature of this thesis, 

numerical data is a favorable fit. 

 

4.3 DATA COLLECTION 

The data collection for this thesis is somewhat challenging, due to the size of the datasets. The 

programming language Python is favorable when handling the data, as more basic programs like Excel 

does not provide the necessary tools and have certain limits related to data capacity. The data is 

collected through an Application Programming Interface, also called an API. This software 

intermediary let two applications talk to each other. The use of an API basically means that an 
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application connects to the cryptocurrency exchanges and sends trade data to a server. This happens 

continuously, and all trades made are therefore saved and available. This raw data includes transaction 

prices of every trade and the volume of the trade, specified in bitcoin. Not all cryptocurrency exchanges 

offer the use of API on historical data. In that scenario, the website Bitcoincharts.com is used to 

download data, which is the world’s leading provider for financial and technical data related to the 

Bitcoin network ("Markets API", n.d.). 

 

4.4 DATA PREPARATION 

Usually, downloaded data is specified in time intervals or have to be transformed in these intervals. 

This means that price data is grouped into candles, normally 1-minute candles or larger. However, due 

to the specifications of the Hayashi-Yoshida estimator, it is possible to use the tick data directly. Hence, 

data files with all transactions will not be adjusted when this estimator is applied. For other theoretical 

approaches like the classic causality approach that will be explained in Section 4.7, the data is 

aggregated to minute-candles. This is also the case for the datasets used in the regression analysis in 

Section 6.2.3, which operates with daily candles. In addition, information on opening, closing, average, 

highest, and lowest price in the interval, can be included.  

 

4.5 RESEARCH QUALITY  

This thesis is solely based on secondary data sources since all trade data is historical information 

available for download. This differentiates from primary data, which is collected directly from the 

researcher. This could be through surveys, interviews or direct observations. It is important to consider 

the advantage and disadvantage of secondary data. According to Saunders et al. (2016), secondary 

data is more straightforward to collect than primary data. Hence, less effort in data collection is needed. 

This can be allocated to other parts of the process, which includes analysis and interpretation. 

Secondary data provide the opportunity to compare and give context, which means that the result can 

be placed in a more general context. Furthermore, as secondary data is more accessible to the public, 

it can easier be checked by others. There are also some disadvantages of secondary data. It can be 

collected for other purposes than what is intended use by yourself. This can make lead to data that is 

not applicable for answering your research questions. However, for this thesis, data collected is raw 

trade data, which makes this disadvantage irrelevant. It can also be challenging to judge the reliability 
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and credibility of, e.g. online sources. This can affect the quality of the data, which will be addressed 

in Section 5.3. 

 

4.6 LIMITATIONS AND WEAKNESSES   

The datasets for this thesis are subjectively chosen. That is, both the period that the datasets are 

collected from and the selected cryptocurrency exchanges. As the thesis only use data from 2018, this 

can lead to results that miss out on essential trends or findings on lead-lag relationships, both before 

2018 and the first part of 2019. The cryptocurrency market is young and evolving every day with new 

exchanges and investors. The last couple of years have been quite different in terms of price movements, 

and the subjective selection of the time period in this thesis will probably impact the result. In addition, 

the seven cryptocurrency exchanges could reveal relationships that are not presented in the rest of the 

market. However, the selection of exchanges is based on a number of factors, including trustable trading 

volume reporting, security aspects and popularity among investors. The selection should provide a 

meaningful result that can be used to conclude on the overall market. Nevertheless, it is important to 

be aware of these kinds of limitations and weaknesses that can affect the overall conclusion. 

 

4.7 CAUSALITY APPROACH 

Throughout the last decades, several approaches to lead-lag relationships have been used to explore 

this area. As discussed in the theory section, this thesis will go into detail on two different approaches. 

One of the well-known approaches based on cointegration relationships and Granger causality will now 

be explained and will be addressed as the causality approach.  

 

4.7.1 TESTING FOR STATIONARITY  

As described in Section 3.4, it is important to determine if the time series in the datasets are stationary 

or not. Misleading result can occur if non-stationary time series are included. The most used approach 

when testing for stationary is the Dickey-Fuller test (Dickey & Fuller, 1979). 

 

4.7.1.1 THE DICKEY-FULLER TEST 
The objective of the Dickey-Fuller (DF) test is to test if the null hypothesis that 𝜙𝜙 = 1 in the equation: 
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𝑦𝑦𝑡𝑡 = 𝜙𝜙𝑦𝑦𝑡𝑡−1 + 𝑢𝑢𝑡𝑡 

holds against the one-sided alternative 𝜙𝜙 < 1. This gives the following hypotheses: 

𝐻𝐻0: The time series contains a unit root 

𝐻𝐻1: The times series is stationary 

 

A common approach is to difference the time series before applying the DF test. The equation above 

is then transferred into the first difference by subtracting 𝑦𝑦𝑡𝑡−1 from both sides, for ease of 

computation and interpretation (Brooks, 2008): 

𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1 = 𝜙𝜙𝑦𝑦𝑡𝑡−1 − 𝑦𝑦𝑡𝑡−1 + 𝑢𝑢𝑡𝑡 

Δyt = (𝜙𝜙 − 1)𝑦𝑦𝑡𝑡−1 + 𝑢𝑢𝑡𝑡 

Δ𝑦𝑦𝑡𝑡 = 𝜓𝜓𝑦𝑦𝑡𝑡−1 + 𝑢𝑢𝑡𝑡 

The equation above now includes 𝜓𝜓, which is equal to 𝜙𝜙 − 1. This means that the null hypothesis 

presented above is equivalent to a test of 𝜓𝜓 = 0, against the alternative that 𝜓𝜓 < 1. Moreover, if 𝜓𝜓 =

1, this represent a time series that follows a pure random walk where the lagged value of the variable 

has no influence on the value at time 𝑡𝑡 (Brooks, 2008). Two alternative equations for the Dickey-Fuller 

test can also be used. These models include an intercept and linear trend to the equation presented 

above, and are presented below (Dickey & Fuller, 1979): 

Δ𝑦𝑦𝑡𝑡 = 𝛼𝛼 + 𝜓𝜓𝑦𝑦𝑡𝑡−1 + 𝑢𝑢𝑡𝑡 

Δ𝑦𝑦𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝑡𝑡 + 𝜓𝜓𝑦𝑦𝑡𝑡−1 + 𝑢𝑢𝑡𝑡 

The first of the two equations represent a time series variable that is a random walk with a drift. This 

is often seen for macroeconomic variables and includes a predictable trend as well as the stochastic 

unpredictable trend (Asteriou & Hall, 2007). The second equation represents a time series variable 

where a time trend variable is included as an independent variable. Hence, stationarity is ensured 

around the trend, meaning that the stochastic part of the process will disappear over time instead of 

adding to the deterministic trend. Before applying a DF test to a times series, it is necessary to decide 

which equation to use. Using the wrong equation can lead to biased results of the test due to different 

levels of critical values. A visual examination can be done to evaluate the need for an intercept, a linear 

trend, or both. The Dickey-Fuller test statistic is defined as: 

𝜏𝜏 = 𝜓𝜓�

𝑆𝑆𝑆𝑆�𝜓𝜓��
. 
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Here, 𝜓𝜓� is the estimated coefficient from OLS and 𝑆𝑆𝑆𝑆�𝜓𝜓�� is the standard error of the coefficient 𝜓𝜓�. 

This test statistic follows a non-standard distribution that is skewed to the left, and not the usual t-

distribution under the null hypothesis (Dickey & Fuller, 1979). This is due to the non-stationarity of 

the null and leads to special DF critical values used for comparison with the computed test statistics. 

These values are much bigger than standard normal critical values, in absolute terms. Hence, more 

evidence against the null hypothesis of the DF test is required to reject it, compare to a standard t-

test (Brooks, 2008). 

 

4.7.1.2 THE AUGM ENTED DICKEY-FULLER TEST 
The test presented above is based on the fact that the error term 𝑢𝑢𝑡𝑡 is a white noise process, i.e. 

𝑢𝑢𝑡𝑡~𝐼𝐼𝐼𝐼𝐼𝐼(0,𝜎𝜎2). However, this is normally not the case and an extended equation is presented called the 

Augmented Dickey-Fuller test (Brooks, 2008): 

Δ𝑦𝑦𝑡𝑡 = 𝜓𝜓𝑦𝑦𝑡𝑡−1 + �𝛼𝛼𝑖𝑖Δ𝑦𝑦𝑡𝑡−1 + 𝑢𝑢𝑡𝑡

𝑝𝑝

𝑖𝑖=1

 

This equation includes 𝑝𝑝 lags of the dependent variable to account for the autocorrelation of the 

dependent variable, and hence in the error term 𝑢𝑢𝑡𝑡 as well. This inclusion of lags absorbs the 

autocorrelation and ensure an error term that is a white noise process. This extended test follows the 

same hypotheses, test statistics and critical values as the standard DF test. However, this test leads to 

a new problem as the optimal number of lags needs to be chosen. If more lags than necessary are 

included, this can lead to more type II errors. That is, accepting a false null hypothesis. As more lags 

are included, the degrees of freedom will be affected and cause the absolute value of the test statistics 

to decrease. On the other hand, choosing too few lags will lead to more type I errors as some of the 

autocorrelation is left in the model. That is, rejecting a true null hypothesis. To determine the right 

number of lags, it is recommended to use the number of lags that minimizes an information criterion, 

normally through the Schwartz Bayesian Information Criteria (SBIC) or the Akaike Information 

Criterion (AIC) (Brooks, 2008). The number of lags that minimizes the AIC and SBIC values is chosen 

as the optimal lag length. SBIC is more consistent, but inefficient, and the AIC is not consistent, but 

more efficient. Hence, no criterion is definitely superior to the other (Brooks, 2008). In this thesis SBIC 

will be used, and can be written as: 

𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆 = 𝑙𝑙𝑒𝑒|𝜎𝜎�2| +
𝑘𝑘
𝑇𝑇

(𝑙𝑙𝑒𝑒𝑇𝑇) 
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In this equation, 𝜎𝜎�2 the residual variance, T is the number of observations, and 𝑘𝑘 is the number of 

parameters estimated.  

 

4.7.2 VECTOR AUTOREGRESSIVE MODEL 

A vector autoregressive model (VAR) is a systems regression model, which indicates that there is more 

than one dependent variable. This is considered to be a “hybrid” between univariate time series models 

and simultaneous equations models. The simplest case in a bivariate VAR, where only two variables 

are included. The current values of these two variables, 𝑦𝑦1𝑡𝑡 and 𝑦𝑦2𝑡𝑡, depends on different combinations 

of the previous 𝑘𝑘 values of both variables and their error terms (Brooks, 2008). This can be written as: 

𝑦𝑦1𝑡𝑡 = 𝛽𝛽10 + 𝛽𝛽11𝑦𝑦1𝑡𝑡−1 + ⋯+ 𝛽𝛽1𝑘𝑘𝑦𝑦1𝑡𝑡−𝑘𝑘 + 𝛼𝛼11𝑦𝑦2𝑡𝑡−1 + ⋯+ 𝛼𝛼1𝑘𝑘𝑦𝑦2𝑡𝑡−𝑘𝑘 + 𝑢𝑢1𝑡𝑡 

𝑦𝑦2𝑡𝑡 = 𝛽𝛽20 + 𝛽𝛽21𝑦𝑦2𝑡𝑡−1 + ⋯+ 𝛽𝛽2𝑘𝑘𝑦𝑦2𝑡𝑡−𝑘𝑘 + 𝛼𝛼21𝑦𝑦1𝑡𝑡−1 + ⋯+ 𝛼𝛼2𝑘𝑘𝑦𝑦1𝑡𝑡−𝑘𝑘 + 𝑢𝑢2𝑡𝑡 

Where 𝑢𝑢𝑖𝑖𝑡𝑡 is the white noise disturbance term with 𝑆𝑆(𝑢𝑢𝑖𝑖𝑡𝑡) = 0, (𝑖𝑖 = 1,2),𝑆𝑆(𝑢𝑢1𝑡𝑡,𝑢𝑢2𝑡𝑡) = 0. 

 

A VAR can be extended to include several variables, where each have an equation like the ones 

presented above. When a model includes a set of 𝑔𝑔 variables with 𝑘𝑘 lags of each variable, a general 

notation can be used: 

𝑦𝑦𝑡𝑡 =         𝛽𝛽0      +        𝛽𝛽1𝑦𝑦𝑡𝑡−1       +       𝛽𝛽2𝑦𝑦𝑡𝑡−2      + ⋯+      𝛽𝛽𝑘𝑘𝑦𝑦𝑡𝑡−𝑘𝑘       +     𝑢𝑢𝑡𝑡 

𝑔𝑔 × 1       𝑔𝑔 × 1        𝑔𝑔 × 𝑔𝑔𝑔𝑔 × 1           𝑔𝑔 × 𝑔𝑔  𝑔𝑔 × 1             𝑔𝑔 × 𝑔𝑔  𝑔𝑔 × 1        𝑔𝑔 × 1 

This model can also be extended to a model that includes first difference terms and cointegrating 

relationship, called a vector error correction model (VECM).  

 

4.7.3 JOHANSEN CO-INTEGRATION TEST  

There are several methods for testing cointegration between two or more variables. The most common 

method is presented by Engle & Granger (1987) and is called the Engle and Granger two-step method. 

However, this is a univariate approach, which means that it only analysis pairwise relationships between 

variables. In this thesis, the focus will be on a multivariate approach presented by Johansen (1988). 

This test explores cointegration in a system of more than two variables. That is, a more general 

approach to cointegration. This is fitting for this thesis as time series from several cryptocurrency 

exchanges will be included in the analysis, and the main focus will be on short-run dependence with 
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the Hayashi-Yoshida cross-correlation estimator. Hence, the cointegration test will be used as an 

introducing test, and another approach will be used to determine the detailed short-run relationships 

between the time series from different exchanges. In addition, the Johansen method improves some of 

the drawbacks with the Engle-Granger method. The multivariate test allows all variables to be 

endogenous, and the Engle-Granger method only allows one endogenous and one exogenous variable. 

Moreover, the Johansen method makes it possible to provide results that explain all the cointegration 

relationships between variables (Brooks, 2008). 

 

The Johansen-test is based on a vector autoregressive model (VAR). Furthermore, this VAR needs to 

be transformed into a Vector Error Correction Model (VECM) which was briefly touched upon in the 

previous section. A VECM can be written as (Brooks, 2008): 

Δ𝑦𝑦𝑡𝑡 = ∏𝑦𝑦𝑡𝑡−𝑘𝑘 + Γ1Δ𝑦𝑦𝑡𝑡−1 + Γ2Δ𝑦𝑦𝑡𝑡−2 + ⋯+ Γ𝑘𝑘−1Δ𝑦𝑦𝑡𝑡−(𝑘𝑘−1) + 𝑢𝑢𝑡𝑡 

where 

∏ = �∑ 𝛽𝛽𝑖𝑖𝑘𝑘
𝑖𝑖=1 � − 𝐼𝐼𝑔𝑔 and Γi = �∑ 𝛽𝛽𝑗𝑗𝑖𝑖

𝑗𝑗=1 � − 𝐼𝐼𝑔𝑔 

The VAR presented above is now a set of 𝑔𝑔 variables in first differenced form on the left-hand side, 

and 𝑘𝑘 − 1 lags of the dependent variables (differences) on the right-hand side, each with a Γ coefficient 

matrix attached to it. This test focuses on the ∏ matrix, which can be understood as a long-run 

coefficient matrix. This is due to the fact that when in equilibrium, all the values of Δ𝑦𝑦𝑡𝑡−1 will be zero. 

In addition to this, when the error terms 𝑢𝑢𝑡𝑡 are set to their expected value of zero, this will result in 

∏𝑦𝑦𝑡𝑡−𝑘𝑘 = 0 (Brooks, 2008). The Johansen test uses the eigenvalues to determine a rank of the ∏ matrix. 

This rank, 𝑟𝑟, will be equal to the number of eigenvalues that are significantly different from zero. 

Eigenvalues, 𝜆𝜆, are also called characteristic roots, and will indicate the number of cointegrated vectors 

in the system of variables. Furthermore, the test result can result in three different cases when assessing 

the rank of the ∏ matrix (Johansen & Juselius, 1990): 

• 𝑟𝑟 = 𝑔𝑔 
This case is a full rank, as all eigenvalues are significantly different from zero. This indicates 

that the variables in the system are all stationary, and no cointegration is possible. 
• 𝑟𝑟 = 0 

In this case the rank is zero, as no eigenvalues are significantly different from zero. This also 

indicates no cointegration, since there are no linear combinations of the variables in the system 

that are I(0), i.e. stationary processes. 
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• 0 < 𝑟𝑟 < 𝑔𝑔 
This case has a reduced rank, as some of the eigenvalues are significantly different from zero. 

This indicates that there are 𝑟𝑟 linear combinations of variables in the system that are I(0). 

Hence, cointegration exist in the system, with 𝑟𝑟 cointegrated variables. 

There are two sets of test statistics under the Johansen approach (Brooks, 2008). These two are 

presented below, and are called the Trace test and the Maximum Eigenvalue test: 

𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑟𝑟) = −𝑇𝑇 � ln�1 − �̂�𝜆𝑖𝑖�
𝑔𝑔

𝑖𝑖=𝑡𝑡+1

 

𝜆𝜆𝑚𝑚𝑡𝑡𝑚𝑚(𝑟𝑟, 𝑟𝑟 + 1) = −𝑇𝑇 ln�1 − �̂�𝜆𝑡𝑡+1�  

where 𝑟𝑟 is the number of cointegrated vectors under the null hypothesis and �̂�𝜆𝑖𝑖 is the estimated value 

of the 𝑖𝑖th ordered eigenvalue from the ∏ matrix. 

 

The Trace test’s null hypothesis states that the number of cointegrated vectors is less than or equal to 

𝑟𝑟. This is testes against the alternative that there are more than 𝑟𝑟 cointegrated vectors. Hence, the 

Trace test is a joint test. The other test statistic, the Maximum eigenvalue test, take each eigenvalue 

individually when testing. The null hypothesis states that the number of cointegrated vectors is 

precisely 𝑟𝑟, and is tested against the alternative 𝑟𝑟 + 1 cointegrated vectors (Brooks, 2008). The 

distributions of these tests are non-standard and the critical values to be used depend on the value of 

(𝑔𝑔 − 𝑟𝑟) (Johansen & Juselius, 1990). Furthermore, these critical values are sensitive to the choice of 

lags and the number of deterministic terms in the VAR. Hence, one should carefully determine the 

optimal lag length, and decide if a constant or a trend should be included.  

 

4.7.4 WALD TEST FOR GRANGER CAUSALITY 

The sections above will provide results on cointegration and determine if the variables have a long-run 

relationship in general. However, it would be useful with information about the short-run relationship. 

Variables might be related in the short-run, even if there is no sign of cointegration in the long-run. 

Thus, this section will provide an explanation of the Wald test that explores Granger causality between 

variables. As explained in the theory section, variable 𝑥𝑥𝑡𝑡 is said to Granger cause 𝑦𝑦𝑡𝑡 if it can be shown 

that lagged values of 𝑥𝑥𝑡𝑡 will improve the forecast of 𝑦𝑦𝑡𝑡. The Wald test is a standard F-test, and a 

simple VAR can be considered: 
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𝑦𝑦𝑡𝑡 = 𝛽𝛽1𝑦𝑦𝑡𝑡−1 + 𝛽𝛽2𝑦𝑦𝑡𝑡−2 + ⋯+ 𝛽𝛽𝑘𝑘𝑦𝑦𝑡𝑡−𝑘𝑘 + 𝛼𝛼1𝑥𝑥𝑡𝑡−1 + 𝛼𝛼2𝑥𝑥𝑡𝑡−2 + ⋯+ 𝛼𝛼𝑞𝑞𝑥𝑥𝑡𝑡−𝑞𝑞 + 𝑢𝑢𝑡𝑡 
 

Given significant 𝛼𝛼-coefficicents of the lagged values of 𝑥𝑥, 𝑥𝑥 is said to Granger cause 𝑦𝑦. Furthermore, 

this is tested for 𝑦𝑦 as well, to determine if there is causality in both directions, i.e. bidirectional 

causality. The estimated VAR is used in the Granger causality test when restrictions are imposed with 

the following hypotheses (Brooks, 2008): 

𝐻𝐻0:𝛼𝛼1 = 𝛼𝛼2 = 𝑎𝑎𝑝𝑝 = 0                      (𝑥𝑥 𝑑𝑑𝑑𝑑𝑒𝑒𝑎𝑎 𝑒𝑒𝑑𝑑𝑡𝑡 𝐺𝐺𝑟𝑟𝑎𝑎𝑒𝑒𝑔𝑔𝑒𝑒𝑟𝑟 𝑒𝑒𝑎𝑎𝑢𝑢𝑎𝑎𝑒𝑒 𝑦𝑦) 

𝐻𝐻1:𝑎𝑎𝑡𝑡 𝑙𝑙𝑒𝑒𝑎𝑎𝑎𝑎𝑡𝑡 𝑑𝑑𝑒𝑒𝑒𝑒 𝑑𝑑𝑓𝑓 𝛼𝛼𝑝𝑝 ≠ 0                      (𝑥𝑥 𝑑𝑑𝑑𝑑𝑒𝑒𝑎𝑎 𝐺𝐺𝑟𝑟𝑎𝑎𝑒𝑒𝑔𝑔𝑒𝑒𝑟𝑟 𝑒𝑒𝑎𝑎𝑢𝑢𝑎𝑎𝑒𝑒 𝑦𝑦) 

That is, testing the null hypothesis that the estimated coefficients 𝛼𝛼𝑝𝑝 on the lagged values of 𝑥𝑥 are 

jointly zero. If the results fail to reject the null hypothesis, 𝑥𝑥 does not Granger cause 𝑦𝑦. 

 

4.8 THE HAYASHI-YOSHIDA ESTIMATOR 

The presented approach of causality in the previous section will only provide results on the fact that 

lead-lag relationships exist between the time series on different cryptocurrency exchanges. However, 

one would prefer a more comprehensive approach. This section will describe a modern approach through 

the Hayashi-Yoshida estimator used on two series of non-synchronous tick data (Hayashi & Yoshida, 

2005). This will enable information on how strong the lead-lag relationship is, in addition to information 

about the time aspect of the relationship, i.e. at what time the relationship is strongest. The 

methodological approach will follow the work of Huth & Abergel (2012) and Hoffman et al. (2013).  

 

As described in Section 3.5.3, this Hayashi-Yoshida (HY) cross-correlation estimator does not require 

any kind of data synchronization, which means that raw tick data of transactions is used. Hence, no 

data modifications in the form of interpolation or resampling at regular intervals are done. By doing 

this, potential biases are avoided (Huth & Abergel, 2012). The primary purpose of this HY approach 

is to calculate the correlation between one series and timestamp-adjusted version of another series. 

This will provide results on which time adjustment that will maximize the two series’ correlation. 

Hayashi & Yoshida (2005) introduce this new estimator of the linear correlation coefficient by looking 

at two diffusive processes. Given two Itô processes, X and Y, such that: 

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇𝑡𝑡𝑋𝑋𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑡𝑡𝑋𝑋𝑑𝑑𝑊𝑊𝑡𝑡
𝑋𝑋 

𝑑𝑑𝑌𝑌𝑡𝑡 = 𝜇𝜇𝑡𝑡𝑌𝑌𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑡𝑡𝑌𝑌𝑑𝑑𝑊𝑊𝑡𝑡
𝑌𝑌 

𝑑𝑑〈𝑊𝑊𝑋𝑋,𝑊𝑊𝑌𝑌〉𝑡𝑡 = 𝜌𝜌𝑡𝑡𝑑𝑑𝑡𝑡  



4. METHODOLOGY  

30 

The observations times, that must be independent for X and Y, are given by:  
0 = 𝑡𝑡0 ≤ 𝑡𝑡1 ≤ ⋯ ≤ 𝑡𝑡𝑛𝑛−1 ≤ 𝑡𝑡𝑛𝑛    = 𝑇𝑇       𝑓𝑓𝑑𝑑𝑟𝑟 𝑋𝑋 
0 = 𝑎𝑎0 ≤ 𝑎𝑎1 ≤ ⋯ ≤ 𝑎𝑎𝑚𝑚−1 ≤ 𝑎𝑎𝑚𝑚 = 𝑇𝑇       𝑓𝑓𝑑𝑑𝑟𝑟 𝑌𝑌 

Then, an unbiased and consist estimator of the covariance, ∫ 𝜎𝜎𝑡𝑡𝑋𝑋𝜎𝜎𝑡𝑡𝑌𝑌𝜌𝜌𝑡𝑡𝑑𝑑𝑡𝑡
𝑇𝑇
0 , between the series is given 

by the following equation: 

𝑆𝑆 = �𝑟𝑟𝑖𝑖𝑋𝑋𝑟𝑟𝑗𝑗𝑌𝑌

𝑖𝑖,𝑗𝑗

1�𝑂𝑂𝑖𝑖𝑖𝑖≠∅� 

where  

𝑟𝑟𝑖𝑖𝑋𝑋 = 𝑋𝑋𝑡𝑡𝑖𝑖 − 𝑋𝑋𝑡𝑡𝑖𝑖−1  

𝑟𝑟𝑗𝑗𝑌𝑌 = 𝑌𝑌𝑡𝑡𝑖𝑖 − 𝑌𝑌𝑠𝑠𝑖𝑖−1 

𝑂𝑂𝑖𝑖𝑗𝑗 =]𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖] ∩]𝑎𝑎𝑗𝑗−1, 𝑎𝑎𝑗𝑗]  

This estimator is an unbiased and consistent estimator as the largest mesh size goes to zero, which is 

different from standard previous-tick correlation estimators. It may seem challenging to interpret the 

equation given for C. However, it only shows that the covariance is calculated by summing every 

product of increments as soon as they share any overlap of time (Huth & Abergel, 2012). Figure 4.1 

below illustrates non-synchronous observations from two series and the interval between observations. 

 

Figure 4.1 – Non-synchronous data. Each dot illustrates a data point, t is the arrival time of observations, and I is the 

interval between two consecutive observations 

Looking at Figure 4.1, the covariance of the series X and Y is calculated by summing the products of 

the following pairs of return: �𝑟𝑟𝐼𝐼1
𝑋𝑋, 𝑟𝑟𝐼𝐼1

𝑌𝑌�, �𝑟𝑟𝐼𝐼2
𝑋𝑋, 𝑟𝑟𝐼𝐼1

𝑌𝑌� and �𝑟𝑟𝐼𝐼2
𝑋𝑋, 𝑟𝑟𝐼𝐼2

𝑌𝑌�. Given constant volatilities and correlation, 

a consistent estimator for the cross-correlation coefficient 𝜌𝜌 of X and Y is given by (Huth & Abergel, 

2012): 

𝜌𝜌� =
∑ 𝑟𝑟𝑖𝑖𝑋𝑋𝑟𝑟𝑗𝑗𝑌𝑌1�𝑂𝑂𝑖𝑖𝑖𝑖≠∅�𝑖𝑖,𝑗𝑗

�∑ �𝑟𝑟𝑖𝑖𝑋𝑋�
2

𝑖𝑖 ∑ �𝑟𝑟𝑗𝑗𝑌𝑌�
2

𝑗𝑗

 

The next step is to adjust all timestamps of Y, to be able to allow for leads and lags, and re-estimate 

their correlation (Hoffmann et al., 2013). Figure 4.2 below shows the concept of timestamp-adjustment. 
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Figure 4.2 - Adjustment of timestamps. 

𝑌𝑌(ℓ) is made by adjusting the observations of Y backward in time by the same amount 𝛥𝛥𝑡𝑡 

 If the series X is fixed and 𝑌𝑌(ℓ) is the timestamp-adjusted series, the lagged cross-correlation coefficient 

𝜌𝜌(ℓ) between the series is given by (Huth & Abergel, 2012): 

𝜌𝜌(ℓ) =
∑ 𝑟𝑟𝑖𝑖𝑋𝑋𝑟𝑟𝑗𝑗𝑌𝑌1�𝑂𝑂𝑖𝑖𝑖𝑖ℓ ≠∅�𝑖𝑖,𝑗𝑗

�∑ �𝑟𝑟𝑖𝑖𝑋𝑋�
2

𝑖𝑖 ∑ �𝑟𝑟𝑗𝑗𝑌𝑌�
2

𝑗𝑗

 

where  

𝑂𝑂𝑖𝑖𝑗𝑗ℓ = ]𝑡𝑡𝑖𝑖−1, 𝑡𝑡𝑖𝑖] ∩]𝑎𝑎𝑗𝑗−1 − ℓ, 𝑎𝑎𝑗𝑗 − ℓ]  

The full cross-correlation function can now be computed by shifting all the timestamps of Y and then 

use the HY estimator given in the equation above. This will make it possible to decide if one of the 

series leads the other, by measuring the asymmetry of the cross-correlation between the positive and 

negative lags. The grid of lags will be given in seconds in this thesis, which means that Y will be moved 

backwards and forwards with 1-second lags. The analysis will be taken further by finding the lag where 

the maximum level of cross-correlation occurs. That is, at which lag the cross-correlation is highest. If 

this is zero, the cross-correlation of the series is highest when they are observed at the same time. 

Moreover, if this is positive X leads Y by this number of lags, and if this is negative Y leads X by this 

number of lags. The maximum correlation found is called the lead-lag correlation coefficient. 

 

Furthermore, Huth & Abergel (2012) present an equation for calculating the relative strength of the 

lead-lag relationships, which is closely related to Granger Causality. If the measure is higher than one, 

X leads Y, and vice versa if the measure is below one. The equation, called the Lead-Lag Ratio, is 

presented below: 

𝐿𝐿𝐿𝐿𝑅𝑅 =
∑ 𝜌𝜌2(ℓ𝑖𝑖)
𝑝𝑝
𝑖𝑖=1

∑ 𝜌𝜌2(−ℓ𝑖𝑖)
𝑝𝑝
𝑖𝑖=1

      (ℓ𝑖𝑖 > 0) 
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The numerator of the LLR is the sum of squared correlation coefficients at all lead of Y, and the 

denominator is the sum of squared correlation coefficients at all lags of Y.  

 

To summarize, the Hayashi-Yoshida estimator will then give results on which of the two series that is 

leading the other, how strong this leadership is, and when this lead-lag relationship is strongest. 

 

4.9 LINEAR REGRESSION 

In order to evaluate which factors that affect the lead-lag relationship, this thesis will take us of linear 

regression. That is, estimating the linear relationship between the lead-lag variables and several 

independent variables. Both the dependent and the independent variables in the regression analysis 

will be presented in Section 6.2.3.  

 

The regression analysis will be based on multiple linear regression. This regression method attempts to 

model the relationship between two or more independent variables and one dependent variable, by 

fitting a linear equation to observed data (Newbold et al., 2013). The multiple regression model is 

defined as: 

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘 + 𝜀𝜀𝑖𝑖 

Where 𝑌𝑌𝑖𝑖 is the dependent variable (i.e. the lead-lag variable), 𝛽𝛽0 denotes the intercept, 𝛽𝛽𝑘𝑘 represents 

the slope and 𝑋𝑋𝑘𝑘 is the chosen independent variable. The random error term 𝜀𝜀𝑖𝑖 indicates the variation 

in 𝑌𝑌𝑖𝑖 that is not estimated by the linear relationship (Newbold et al., 2013). 

 

The coefficients in the regression model are typically computed with statistical software, where the 

Ordinary Least Square (OLS) estimator is used so that the estimated regression line is as close as 

possible to the observed data. Various statistical measures will be computed, including the R-squared 

(𝑅𝑅2). This measure shows the proportion of the variance in the dependent variable that is predictable 

from the independent variables. The level of 𝑅𝑅2 can be in the range of 0-1, and a higher value indicates 

a more accurate regression model. In addition, the p-value of the model indicates the reliability of 𝑋𝑋𝑘𝑘 

to predict Y. This thesis will indicate if coefficients are significant at the 1%, 5% or 10% level when p-

values are evaluated. That is, if the test statistic is greater than a given value, the null hypothesis that 

the chosen independent variables are equal to zero can be rejected.  
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4.9.1 ASSUMPTIONS 

The multiple linear regression depends on five assumptions, which will be presented below. 

Linearity 

This assumption is based on the fact that there must be a linear relationship between the independent 

variable and the dependent variable. It is possible to test this assumption by the use of scatter plots 

with the residual values against the predicted values. One can say that the assumption of linearity is 

obtained when the observed points in the scatter plots are symmetrically distributed around the 

predicted regression line (Newbold et al., 2013). 

 

Normality 

This assumption test if the error terms are normally distributed. This is done by the use of the Jarque-

Bera test (Newbold et al., 2013): 

𝐽𝐽𝑆𝑆 𝑡𝑡𝑒𝑒𝑎𝑎𝑡𝑡 = 𝑒𝑒 �
𝑆𝑆𝑘𝑘𝑒𝑒𝑆𝑆𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎2

6
+

(𝐾𝐾𝑢𝑢𝑟𝑟𝑡𝑡𝑑𝑑𝑎𝑎𝑖𝑖𝑎𝑎 − 3)2

24 �~𝑥𝑥2 

The test above is an adaption of the chi-square procedure and depends on the descriptive measures of 

skewness and kurtosis, in addition to the sample size. This normal distribution test relies on the 

skewness closeness to 0, and how close the kurtosis is to 3, where the test statistic is measured up 

against a critical value from the chi-square distribution. If the test shows that the error terms (i.e. the 

residuals) are not normally distributed, this is only a problem for small samples with observations less 

than 100 (Gujarati & Porter, 2009). Furthermore, if the normality assumption test is rejected, this can 

indicate that the significance tests of the coefficients in the regression model may be misleading. 

 

Independence of residuals 

This assumption is related to the fact that the residuals are statistically independent of each other. 

That is, there is no correlation between the error terms. One can use the Durbin-Watson test to check 

for this kind of auto-correlation. The test operates with an upper and a lower bound. It is rejected if 

the test statistic is below the given bound and accepted if it is above. The test can be classified as non-

conclusive of the test statistic is between the two bounds. The result of dependent residuals can be 

biased estimations of the standard errors of the coefficients. Moreover, this can lead to inaccurate 

results of the Student test statistic and rejection of the null hypothesis when it should not be rejected, 

and vice versa (Newbold et al., 2013). 
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Constant Variance 

The fourth assumption is related to the fact that the sample has to be homoscedastic. That is, the 

residuals have a constant variance. One can test for homoscedasticity by the use of the Breusch and 

Pagan’s test. In this test, the null hypothesis says that the error variances are all equal. However, a 

rejection of the null hypothesis indicates that the residuals are heteroscedastic and are subject to non-

constant variance. This will lead to a more doubtful result of the calculated p-value (Newbold et al., 

2013). The problem of heteroscedasticity can by the use of heteroskedasticity-robust standard errors 

be controlled for (Torres-Reyna, 2007). 

 

Multicollinearity 

The fifth assumption which only applies to multiple linear regression is the last to be presented in this 

section. Multicollinearity is said to be present in a multiple linear regression model when a close to 

perfect linear relationship between some of the independent variables is observed. This can also be for 

all independent variables. That is, two or more independent variables are highly correlated. When 

multicollinearity is observed, a normal consequence is large standard errors. Wide confidence intervals 

are observed, which give results that are less reliable (Newbold et al., 2013). To test for 

multicollinearity, the Variance Inflation Factor (VIF) test will be applied. The VIF test gives 

indications on how much larger the standard errors are, compared to a situation where the variables 

have zero correlation to other independent variables in the model. Increasing value in the VIF means 

less reliable regression results. The limit of the VIF will be set to 10, which is in line with Bowerman 

et al. (2005).  

 

4.9.1.1 THE BEST LINEAR UNBIASED ESTIM ATOR 
The five assumptions given above are essential. The Gauss-Markow theorem suggests that a linear 

regression model where the residuals are uncorrelated, have a conditional mean of zero and are 

homoscedastic, gives the Best Linear Unbiased Estimator (BLUE) of the coefficients. The BLUE then 

states that the residuals do not need to be independent and identically distributed, nor do they need 

to follow a normal distribution. In summary, this means that as long as these key assumptions are 

fulfilled, the theorem holds, and the coefficients will be BLUE. This is strengthened by the Central 

Limit Theorem, which states that the sampling distribution of the mean of any independent, random 

variable, will be approximately distributed if the sample size is large enough (Gujarati & Porter, 2009). 
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5 DATA PRESENTATION 

This section will present the data used in the analysis. Several aspects will affect the selection of data. 

Luckily, transparency is one of the key features of Bitcoin. All transactions from the major 

cryptocurrency exchanges are found open and available, in the form of open APIs providing real-time 

data. One dataset from each cryptocurrency exchange is downloaded, which include raw tick data. 

This include timestamp in Unix time, price in BTC and volume of the trade. Unix time is a time 

system that counts seconds from 00:00:00 Thursday, 1 January 1970, GMT. Every day contains 

precisely 86,400 seconds (Matthew & Stones, 2008). 

 

5.1 DATA SELECTION 

As already mentioned, there is a lot of data available from different cryptocurrency exchanges. Firstly, 

a decision was made on which period to include for the analysis. As this thesis is based on high 

frequency data, it would make sense to choose a period with high volume. This will provide a sufficient 

amount of data, to enable in-depth analysis. The year 2018 is selected, including all trades on all of 

the chosen cryptocurrency exchanges. Although the volume peaked around the price top at the end of 

2017, 2018 has shown a higher volume overall. It could be useful to include some months from 2017, 

but the amount of data would be overwhelming. As the largest cryptocurrency exchanges have between 

25-90 million trades in 2018, this should provide sufficient information for the analysis. 

  

This thesis includes data from seven different cryptocurrency exchanges. These are chosen carefully 

and are mostly based on a detailed report from the investment company Bitwise Asset Management, 

which was published in March 2019. The report was a part of the company’s ETF filing to the U.S. 

Securities and Exchange Commission. This report highlighted several factors of the bitcoin marked and 

revealed that 95% of the reporter trading volume was fake. The company used the reported volume 

from the most popular cryptocurrency website, CoinMarketCap. The report points out that only 10 

out of 81 cryptocurrency exchanges have significant real volume. Bitwise performed two data-driven 

tests of the volume patterns. The first test looks at trade size histograms, revealing that a lot of 

exchanges have completely artificial trade size histograms. The second test looks at the volume spike 

alignment. This tells that the exchanges with real volume have volume spikes that align perfectly since 

they’re part of the same market. On the other hand, the exchanges with fake volume have volume 

spikes that do not correspond with the broader market (Bitwise Asset Management, 2019). 
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Based on the report from Bitwise, the following exchanges were chosen: 

• Binance 
The leading exchange worldwide by reported volume. Seen significant growth the last year. 
Started as a Chinese exchange, but is now based in Malta due to regulatory aspects. The 
exchange is well known for offering a large number of altcoins. 

• Bitfinex 
Founded already in 2012 and have been one of the leading exchanges for several years, although 
several hacks have occurred. The firm behind the exchange is based in Hong Kong. The 
exchange has not been serving U.S customers since 2017, claiming it was too expensive. Critics 
have raised questions about the relationship between the exchange and the stablecoin Tether, 
and the solvency of Tether which is supposed to be backed by the US Dollar. Tether is closely 
related to Bitfinex and share both common shareholders and management (Castor, 2018). 

• Kraken 
As one of the oldest cryptocurrency exchanges, Kraken was founded in 2011. It is located in 
San Francisco. Kraken was the first exchange to display its market data on the Bloomberg 
Terminal and is backed by several large investors ("Why Kraken?", n.d.). 

• Bitstamp 
This exchange is based in London and was founded to offer a Europa-based alternative to the 
previously dominant cryptocurrency exchange Mt. Gox. As one of the oldest exchanges, it 
moved to the UK in 2013, after operating in Slovenia since 2011. It is well known for offering 
free deposits with fiat currencies through bank transfers in Europa. Accepted as a fully 
regulated payment institution in the EU in 2016, it can operate in EU countries (Williams-
Grut, 2018). 

• Coinbase 
Founded in 2012, this exchange has been popular for several years. It is based in San Francisco 
and is backed by investors like ICE, the owner of the New York Stock Exchange. The exchange 
has been on the forefront with partnerships, including Paypal, Overstock and Dell. The 
exchange is available in 42 countries ("Coinbase Inc", 2019). 

• Poloniex 
This US-based exchange launched in 2014 and got acquired by the company Circle in 2018 for 
$400 million. Circle is one of the leading blockchain and cryptocurrency companies today and 
launched a stablecoin backed by the US Dollar in 2018 in a project together with Coinbase 
(Alexandre, 2018).  

• Hitbtc 
Hitbtc was not a part of the list of exchanges with real volume in the Bitwise report and is 
included to see if this provide any suspicious or different results. However, Hitbtc is one of 
the oldest exchanges, with high reported volume and advanced API services for trading. 
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5.2 DATA CLEANING 

This thesis will include two different approaches to lead-lag relationships. In the first part of the 

analysis that explores causality, the data needs to be defined in specific time intervals. Hence, new 

datasets are produced where 1-minute time intervals are made. This is done by taking the last price in 

each minute and summing all the volume of the transactions for the given minute. This results in 

datasets for each exchange, that include details on opening, closing and average price for each minute, 

in addition to the volume in that period. The sampling interval should be considered carefully. It is 

important to have short enough intervals to capture the high frequency behavior of the data correctly. 

At the same time, the intervals should be long enough to contain enough observations and to avoid 

noise (Goodhart & O’Hara, 1997). Anderson (2000) argues that an interval of 5 minutes should cover 

these challenges. However, given the high frequency data obtained from the different cryptocurrency 

exchanges, the first part of the analysis will use 1-minute intervals. The second part of the analysis 

will not need any sort of data cleaning, as the HY-approach uses raw transaction data. 

 

5.3 VALIDITY AND RELIABILITY  

Validity and reliability are significant aspects to consider when assessing the quality of the research 

data. Validity is related to the degree that the conducted research accomplishes what it is intended to 

do, according to Smith (2011). Furthermore, Bryman and Bell (2011) say that the goal of a study 

should be to end up with findings that approximately corresponds to the real world. In this thesis, the 

theories and methods are all based on well-established academic papers. This approach and the data 

collected are based on previous empirical studies, which support the validity of this thesis. Some 

subjective selections of data have been made in regard of the cryptocurrency exchanges and time 

periods; thus the validity can be reduced. 

 

In terms of reliability, one usually asks the question of whether the same conclusions would be reached 

by another researcher, following the same procedures and conducting the same study, under the same 

circumstances (Smith, 2011). This thesis only collects secondary data, hence rely on existing data. The 

cryptocurrency exchanges used in this these have the historical trade data public, and all are assumed 

to be reliable sources. According to Bryman and Bell (2011), the study is then considered repeatable.  
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6 DATA ANALYSIS 

6.1 DESCRIPTIVE STATISTICS 

Section 5 presents two different datasets for the analysis. They present the same data, but with different 

frequency. The datasets that are based on 1-minute intervals include 525,600 observations. These 

datasets will be used in this section to describe the characteristics of the data for the analysis. Table 

6.1 below shows a summary of the return series of the bitcoin price on the different cryptocurrency 

exchanges. 

Table 6.1 - Descriptive statistics of returns in 2018 

  Mean Median Max Min Std. Dev Skewness Kurtosis 
Binance -1.48E-06 0 0.0650 -0.0458 0.1424% 0.639 43.869 
Coinbase -1.73E-06 0 0.0307 -0.0516 0.1255% 0.376 38.521 
Bitstamp -1.52E-06 0 0.0369 -0.0317 0.1410% 0.199 18.509 
Bitfinex -1.56E-06 0 0.0572 -0.0340 0.1324% 0.686 34.101 
Kraken -1.60E-06 0 0.0474 -0.0730 0.1400% 0.298 49.882 
Hitbtc -1.80E-06 0 0.0252 -0.0199 0.1180% 0.498 21.747 
Poloniex -1.53E-06 0 0.0321 -0.0244 0.1400% 0.268 18.455 

 

As seen from the table above, there are some interesting characteristics that should be explained. Some 

outliers can be seen from the Max and Min values. Binance shows a strong minute return of 6.5% as 

the max value. Kraken on the other hand, is the exchange with the largest negative return, with -7.3% 

in one minute. These extreme returns are often followed by more extreme returns, as the price usually 

revert back. This is because these extreme returns often are triggered by someone placing an order 

quite far above or below the last price, and the price will then revert back. The standard deviations do 

not show any apparent trends, but Binance as the largest exchange has the highest standard deviation. 

This indicates larger price movements on Binance, but the differences are too small to draw any 

conclusions.  

 

The skewness does also show different results among the exchanges. Both Binance and Bitfinex have a 

skewness above 0.6, whereas Bitstamp has the lowest with 0.19. This indicates that Binance and 

Bitfinex are the exchanges with the longest tails to the right, and the most extreme positive returns 

occur on these exchanges. However, it should be noted that skewness below 1 cannot be called 

substantial and the distribution is not far from symmetrical, but Binance and Bitfinex have 

distributions that are moderately skewed (Bulmer, 1979). Bitstamp has the lowest skewness, which 
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indicates that Bitstamp has the shortest tail and less extreme returns than the other exchanges. The 

kurtosis is more divided. A higher kurtosis indicates a heavier tail. This is especially present for Kraken 

and Binance, which indicate that the amount of extreme returns is more substantial on these exchanges. 

Additional statistics on the price series and volume series of all exchanges are included in Table 1 and 

Table 2 in the Appendix. 

 

As bitcoin can be traded throughout the day with no limitations in trading hours, a presentation of 

the trading activity can be interesting. The charts in Figure 6.1 show the amount of bitcoin traded in 

every hour and show some clear patterns. Coinbase has the most evident pattern, where we see a dip 

in trading volume during night time in the U.S. This indicates a large number of American investors 

on Coinbase, where the exchange also is located. Binance and Bitfinex dip most during Asian night 

time and suggest that a larger group of the investors could be based in Asia. Bitstamp, Kraken, in 

addition to Bitfinex, dip during European night hours, suggestion more European investors. 

Figure 6.1 - Trade distribution over hours and weekdays on the different exchanges 
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An interesting observation is that Coinbase has almost 60% difference from top to bottom trading 

volume during a day. On the other hand, Hitbtc and Binance only have a difference of around 30%. 

This clearly indicates a different trading pattern on these global exchanges. Moving on to the weekday 

distribution seen in Figure 1 in the Appendix, most of the exchanges show the same patterns. All 

exchanges except Hitbtc clearly have lower volume during weekends. This could raise some questions 

about the legitimacy of the reported volume of Hitbtc, which is also confirmed by the report on real 

trading volume by Bitwise (Bitwise Asset Management, 2019). 

 

Table 6.2 below presents the characteristics of the trade size on the different exchanges. For these 

statistics, the full datasets with all transactions for each exchange have been used. It is clear that small 

trades with a volume below 0.01 BTC, are dominant across all exchanges. The fact that Poloniex and 

Coinbase have almost 65% and 45% of all trades in the area below 0.01 BTC, in addition to only 1.83% 

and 3.66% of all trades above 1 BTC, provide valuable insight. This point towards exchanges with 

mostly retail investors and few professional investors. In contrast, Bitfinex seems to have a large group 

of professional investors, with almost 8% of trades with volume over 1 BTC, and only 17.5% of trades 

below 0.01 BTC. The full trade size distribution can be seen in Figure 2 in the Appendix.  

Table 6.2 - Characteristics of the trade size of the individual exchanges 

      < 0.01 BTC  > 1 BTC 
Binance     33.48 %  2.26 % 
Bitfinex     17.47 %  7.75 % 
Bistamp     30.61 %  7.23 % 
Kraken     24.65 %  6.71 % 
Poloniex     64.74 %  1.83 % 
Coinbase     44.89 %  3.66 % 
Hitbtc     34.74 %  4.54 % 

 

Lastly, it is interesting to have a look at correlations. Table 3 and Table 4 in the Appendix provide 

results of correlations between the price and return series. The price series are almost perfectly 

correlated. As they represent the same asset, different results would be troubling. Kraken and Hitbtc 

have the lowest correlations. This could already point towards some differences that could give rise to 

potential lead-lag relationships across the exchanges. This is further strengthened by looking at the 

correlation matrix for the return series. This also shows that especially Kraken has low correlations 

with other exchanges. Another interesting observation is related to Poloniex. This exchange showed 

the highest price correlations with other exchanges, but the lowest return correlations alongside Kraken. 

This can indeed point toward lagging price movements, which will be analyzed in the next section.  
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6.2 LEAD-LAG RELATIONSHIPS 

This section of the analysis will include two different approaches to lead-lag relationships, hence be 

divided into two parts. To begin with, it is important to check for stationarity. This is one key 

assumption when working with time series analysis. Subsequently, cointegration between the series will 

be tested, through the Johansen cointegration test. The first part of the analysis will then end with 

tests for Granger causality between the series, which would provide valuable insight for further analysis. 

The second part of this section will make use of high frequency data, and apply the Hayashi-Yoshida 

cross-correlation estimator. These results will provide information on how strong the lead-lag 

relationships are between exchanges, in addition to details about the time lag of these relationships. 

Furthermore, regression analysis will be used to explore how volume affects the lead-lag relationships 

found with the Hayashi-Yoshida estimator. 

 

6.2.1 CAUSALITY APPROACH 

6.2.1.1 AUGM ENTED DICKEY-FULLER TEST 
As mentioned above, the time series need to be controlled for stationarity. As this thesis analyzes one 

asset on different exchanges, the time series from only one exchange will be examined in this section, 

assuming same results. The visual inspection below makes use of the values from Binance. Figure 6.2 

shows the price of one bitcoin throughout 2018, including a plot of the price in logarithmic levels. 

 

 

Figure 6.2 - Plot of the bitcoin price during 2018, including log-levels 

A visual inspection of both plots indicates non-stationarity, with a clear tendency of a trend downwards 

throughout the year. This is not surprising, as stock prices and other assets typically are decent 

examples of non-stationary I(1) series (Bollerslev et al., 1992). The figure above indicates that the 
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series need to be integrated to achieve stationarity. Nevertheless, the Augmented Dickey-Fuller test is 

applied to confirm the indications from the visual inspections. This test includes lags to account for 

autocorrelation in the residuals, as explained in Section 4.7.1. Table 6.3 below confirms the indications, 

and the null hypothesis of a unit root in the series cannot be rejected, indicating that the bitcoin price 

contains a unit root and is non-stationary.  

Table 6.3 - Results from the Augmented Dickey-Fuller test 

Augmented Dickey-Fuller (Binance) 
      BTC LogBTC 
ADF test statistic   -2.4099 -1.5978 
P-value     0.1389 0.5287 
H0     Not Rejected Not Rejected 

Note: Critical values, 1%: -3.430, 5%: -2.862, 10%: -2.567. Both a constant and trend are included based on the plots. 5 

lags are included according to the results from the SBIC. 

Stationary can possibly be achieved by differencing the log series of bitcoin. Once again, a visual 

inspection is needed. Figure 6.3 below indicates that taking the first differences of the log-levels to 

transform the series into stationarity.  

  

Figure 6.3 - Plot of the first-differenced log-prices of bitcoin in 2018. 

The Augmented Dickey-Fuller test is applied to confirm the indications. Table 6.4 below shows that 

all series are stationary, as the null hypothesis is rejected at a 1% significance level. Hence, the bitcoin 

series are stationary in their first differences, i.e. I(1) non-stationary processes. This is in accordance 

with expectations. The visual inspections from all bitcoin prices on the different exchanges are included 

under Figure 3 in the Appendix, which includes plots of log-levels, in addition to ACF plots to check 

for autocorrelation. All results in this section have been tested with a range of different lags, as the 
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Augmented Dickey-Fuller test is sensitive to the chosen lag length. However, the sensitivity analysis 

showed that the tests still showed stationarity for the bitcoin prices.  

Table 6.4 - Augmented Dickey-Fuller test of all bitcoin prices 

  Binance Bitfinex Bitstamp Kraken Poloniex Coinbase Hitbtc 
ADF test statistic -532.915 -521.257 -539.842 -422.775 -370.931 -415.01 -702.94 
P-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Lags 1 1 1 2 3 2 1 
H0 Rejected Rejected Rejected Rejected Rejected Rejected Rejected 

Note:  Critical values, 1%: -3.959, 5%: -3.410, 10%: -3.127. Constant and trend are not included based on the plot. Lag 

length is chosen by the use of SBIC.  

 

6.2.1.2 JOHANSEN COINTEGRATION TEST 
The last section showed significant results of non-stationary time series. This was an important finding, 

as this indicates that cointegration is theoretically possible, and leads the way for this section. As 

presented in Section 4.7.3, Johansen Cointegration test will be applied. This multivariate cointegration 

test is based on a VECM, where all seven time series from the different exchanges are included. That 

is, 𝑔𝑔 = 7. As all time series are based on the same asset and should in theory be exactly the same, 

cointegration between the series would be expected. Nevertheless, a cointegration test is applied to 

confirm these expectations. Furthermore, all series are converted into logarithmic levels to smooth the 

data and reduce the impact of outliers (Keene, 1995). 

 

As presented in Section 4.7.3, the Johansen approach will be affected by the selected lag length and 

the inclusion of deterministic terms. A VAR model needs to be formulated, to determine the 

characteristics before applying the cointegration test. The use of an information criterion will be applied 

to determine the optimal lag length. By including all seven exchanges, the VAR model will be defined 

with 7 variables. This model is then transformed into a VECM, where a set of the 7 variables are in 

first differenced form on the left-hand side, with the 𝑘𝑘 − 1 lags of the dependent variables differenced 

on the right-hand side, with the coefficient matrix attached. The Johansen test will determine the 

number of cointegrated vectors in the system of variables, presented as the rank 𝑟𝑟. Table 6.5 below 

presents the results from the two test statistics of the Johansen cointegration test.  
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Table 6.5 - Johansen cointegration test 

 

Note:  The VECM used in the Johansen test includes 2 lags given from the information criterion (SBIC). This is also suggested when 

dealing with a system of variables (Juselius, 2006). Both a constant and trend are included based on the log-levels time series plots of the 

different bitcoin prices. 

The results above are in accordance with expectations. The trace test’s null hypothesis states that the 

number of cointegrated vectors is less than or equal to 𝑟𝑟. The results above show that this null 

hypothesis is rejected on the 1% significance level for all values of 𝑟𝑟, except 𝑟𝑟 = 6. At this rank, the 

test statistic is 2.053, which is below all critical values. Hence, the null hypothesis is not rejected. This 

indicates a rank of 6, and the result show a reduced rank, with 6 cointegrated equations in the VECM. 

The other test statistic, the maximum eigenvalues test, test each eigenvalue individually. The null 

hypothesis states that the number of cointegrated vectors is precisely 𝑟𝑟. As for the trace test, the null 

hypothesis is rejected on a 1% significance level for all values of 𝑟𝑟, except 𝑟𝑟 = 6. The test statistics at 

rank 6 is exactly the same as for the trace test, and the null hypothesis of 6 cointegrated vectors cannot 

be rejected. Hence, both tests show a rank of 6. 

 

The results presented above is satisfying and as expected. As earlier described, these results show a 

reduced rank, i.e. 𝑟𝑟 < 𝑔𝑔. A sensitivity analysis on the lag length is performed as well, without any 

change of the results. Hence, the log-level of the bitcoin prices are cointegrated. Different results would 

be troubling, as the series are based on the same asset, and should follow the same path over time. 

 

6.2.1.3 GRANGER CAUSALITY  
The previous section shows cointegration of the bitcoin price on the different cryptocurrency exchanges 

in the long run. It is also interesting to look at the short-run relations that could exist. To end the first 

part of the analysis, the lead-lag relationships between the bitcoin prices in the short-term will be 

analyzed in this section. This will be done by testing for Granger causality between the bitcoin prices.  

r = 0 16717.107 120.367 125.619 135.983 r = 0 9870.651 43.295 46.230 52.307
r = 1 6846.456 91.109 95.754 104.964 r = 1 5354.186 37.279 40.076 45.866
r = 2 1492.270 65.820 69.819 77.820 r = 2 507.429 31.238 33.878 39.369
r = 3 984.842 44.493 47.855 54.682 r = 3 429.214 25.124 27.586 32.717
r = 4 555.628 27.067 29.796 35.463 r = 4 318.357 18.893 21.131 25.865
r = 5 237.271 13.429 15.494 19.935 r = 5 235.218 12.297 14.264 18.520
r = 6 2.053 2.706 3.842 6.635 r = 6 2.053 2.706 3.842 6.635

Trace Test Statistics Max Eigenvalues Test Statistics
Variable 
statistic

Crit-90% Crit-95% Crit-99%
Variable 
statistic

Crit-90% Crit-95% Crit-99%
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Table 6.6 - Granger Causality test of all 21 return pairs 

Exchanges   Test stat P-value Conclusion 
Coinbase -> Bitstamp   1619.39 0 

Bidirectional 
Bitstamp -> Coinbase   2220.85 0 
Coinbase -> Kraken   1943.46 0 

Bidirectional 
Kraken -> Coinbase   244.37 0 

Bitstamp -> Kraken   2618.12 0 
Bidirectional 

Kraken -> Bitstamp   114.82 0 
Coinbase -> Bitfinex   98.15 0 

Bidirectional 
Bitfinex -> Coinbase   4641.24 0 
Bitstamp -> Bitfinex   1433.68 0 

Bidirectional 
Bitfinex -> Bitstamp   6037.44 0 
Kraken -> Bitfinex   154.57 0 

Bidirectional 
Bitfinex -> Kraken   6553.70 0 
Hitbtc -> Bitfinex   46.68 0 

Bidirectional 
Bitfinex -> Hitbtc   6681.28 0 
Hitbtc -> Kraken   204.70 0 

Bidirectional 
Kraken -> Hitbtc   580.50 0 

Coinbase -> Hitbtc   185.72 0 
Bidirectional 

Hitbtc -> Coinbase   93.73 0 
Binance -> Coinbase   5235.88 0 

Bidirectional 
Coinbase -> Binance   108.14 0 
Binance -> Bitstamp   5235.88 0 

Bidirectional 
Bitstamp -> Binance   5304.34 0 
Binance -> Bitfinex   6479.27 0 

Bidirectional 
Bitfinex -> Binance   4055.86 0 
Binance -> Kraken   4898.49 0 

Bidirectional 
Kraken -> Binance   317.59 0 
Poloniex -> Kraken   117.13 0 

Bidirectional 
Kraken -> Poloniex   431.43 0 
Poloniex -> Hitbtc   83.08 0 

Bidirectional 
Hitbtc -> Poloniex   373.18 0 

Poloniex -> Bitstamp   32.98 0 
Bidirectional*** 

Bitstamp -> Poloniex   1212.04 0 
Poloniex -> Bitfinex   41.78 0 

Bidirectional 
Bitfinex -> Poloniex   9694.21 0 
Poloniex -> Coinbase   82.17 0 

Bidirectional 
Coinbase -> Poloniex   914.06 0 
Poloniex -> Binance   96.01 0 

Bidirectional 
Binance -> Poloniex   6561.84 0 
Binance -> Hitbtc   8268.02 0 

Bidirectional 
Hitbtc -> Poloniex   41.30 0 

Bitstamp -> Hitbtc   1175.10 0 
Bidirectional 

Hitbtc -> Bitstamp   122.62 0 
 
* H0 says that X does not Granger Causes Y, reject if the test statistic is above the critical level.  
** Test at 1% significance level with critical value: 9.210.  
*** 2 lags used for all tests. Results are not affected by a change in lags, except for Poloniex --> Bitstamp. This pair 
cannot reject the H0 with 1 lag included, and the only unidirectional relationship is found, indicating that Bitstamp 
Granger causes Poloniex, but not vice versa. 
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The previous section showed that the bitcoin prices do indeed share a stochastic trend in the long-run. 

This section will now analyze if one bitcoin price can be used to predict another bitcoin price in the 

short-term, i.e. if one bitcoin price Granger causes another bitcoin price. According to Granger (1988), 

a cointegration relationship between two series indicate that at least one of the series Granger causes 

the other. Further analyses need to be done to identify if the lead-lag relationships are unidirectional 

or bidirectional.  

 

The Granger causality tests will be based on a VAR model, where restrictions are applied. To identify 

specific relationships between the individual exchanges, pairwise analysis between the bitcoin prices 

will be applied. Furthermore, to apply the Granger causality tests the series needs to be stationary. 

This section will make use of the return series of all prices, which are all stationary. Details on the 

stationarity of the return series can be found in Table 5 in the Appendix. Table 6.6 above show Granger 

causality Wald’s test for all 21 pairs. All exchanges show a bidirectional relationship. The null 

hypothesis is rejected for all tests on a 1% significance level. This basically means that all return series 

can be used to improve the predictions of another return series. Once again, this is not surprising, as 

all series represent the same asset. When lead-lag relationships are found, it is not uncommon to find 

bidirectional relationships (Kawaller et al., 1987). This could also be related to the fact that the series 

are based on 1-minute intervals, and do not provide enough details of the price movements.  

 

Moreover, the results from the Granger causality test also could be related to something completely 

different. Bidirectional Granger causality can be read either as instant causality or common cause 

fallacy (Maziarz, 2015). This kind of misunderstanding casual relations between series can impact the 

conclusion. There could be another series that cause both series that are tested. This is the most 

common reason for spurious causality (Chu et al., 2005). It is not unlucky that common cause fallacy 

is presented for the tested series in this thesis. It could perhaps be that the most liquid exchange, 

Binance, is the true leader is price movements. Hence, Binance could cause other prices series, even 

when it’s not a part of the test. As the pairs where Binance is included also show the bidirectional 

relationship, there could be even more exchanges that are true leaders of price movements. This 

discussion is important to be aware of and will be tested further in Section 6.2.3, where factors that 

affect the lead-lag relationships are explored through the regression analysis.  

 

The first part of the analysis can conclude that there clearly exist lead-lag relationships between the 
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bitcoin prices on the different cryptocurrency exchanges. In addition, this part has highlighted the 

issues with this classic causality approach to determine lead-lag relationships. As the goal is to find 

results that possibly can lead to profitable trading strategies and identify true leading exchanges in 

price movements, these results do not provide a satisfactory level of details. The next part of the 

analysis will explore another approach, where high frequency trade data will be used. 

 

6.2.2 HAYASHI-YOSHIDA CROSS-CORRELATION ANALYSIS 

As an introduction to the second part of the analysis, the datasets will be presented. The HY-estimator 

works with high frequency trade date, and an overview of the trades on the different exchanges is 

useful. Table 6.7 shows all trades and total volume on the different cryptocurrency exchanges 

throughout 2018. 

Table 6.7 – Overview over the number of trades and the volume on each cryptocurrency exchange for 2018. 

  Exchange Trades Volume (BTC)   
  Binance 87,343,449 13,305,165   
  Bitfinex 30,183,548 12,827,302   
  Coinbase 25,125,016 4,961,375   
  Bitstamp 10,949,631 3,932,073   
  Hitbtc 9,265,218 4,140,081   
  Poloniex 9,115,848 837,495   
  Kraken 7,029,062 2,367,024   

 

This part of the analysis undoubtedly includes datasets with different characteristics than the first 

part, which only included 525.600 observations from each exchange. Binance has the most trades with 

over 87 million during 2018. There is a relatively large gap down to Bitfinex and Coinbase, which had 

just over 30 and 25 million trades, respectively. The rest of the exchanges had between 7 and 10 million 

trades during 2018. As explained in Section 4.8, the high frequency approach provides an unbiased 

estimation with non-synchronous data. The differences in trading activity should not affect the results. 

One intuitive thought regarding the lead-lag relationship is that the asset with the highest trading 

activity would lead the other. This is also confirmed by several studies on futures contracts and stock 

prices. However, the HY cross-correlation function has been tested through several simulation studies 

and has shown not to be affected by different levels of trading activity. This characteristic of the 

estimator is essential for this analysis as the trading activity varies between the cryptocurrency 

exchanges. Allowing the results to avoid being fooled by liquidity effects would yield correct results, 

and not automatically yield the most traded asset to be the leader (Huth & Abergel, 2012). 
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6.2.2.1 THE CROSS-CORRELATION FUNCTION 
All 21 pairs of exchanges have been tested, with an initial lead-lag grid of -60 seconds and +60 seconds. 

This will let the results present a leading or lagging relationship between two exchanges up to 1 minute. 

Remembering from Section 4.8, this will generate a cross-correlation function. This function makes it 

possible to decide if one of the series leads the other, by measuring the asymmetry of the cross-

correlation between the positive and negative lags. If the function tops out on lag 0, the correlation is 

highest when no adjustments are made in lags, indicating a weak lead-lag relationship. However, a 

function that indicates a stronger lead-lag relationship will have a top that is found either at a positive 

or a negative lag. All functions are presented in Figure 4 in Appendix, and a selection of interesting 

results are presented in Figure 6.4 below. 

 

Figure 6.4 - Hayashi-Yoshida cross-correlation functions.  

X-axis: 120 lags (seconds), indicating -60 seconds to+60 seconds adjustment of the Y variable in the estimator. 

 Y-axis: Correlation between series at a given lag adjustment. 

These functions provide examples of different lead-lag relationships. The first line of functions indicates 

strong lead-lag relationships between the exchanges. The function for Kraken and Bitfinex is skewed 

to the left. This result indicates that the correlation between the bitcoin prices on these two exchanges 

is strongest when Bitfinex is leading Kraken with 12 seconds. The function of Bitstamp and Kraken 

shows similar results. This function is skewed to the right, and the correlation between the exchanges 

is strongest when Bitstamp is leading Kraken with 11 seconds. It is essential to understand that this 
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is the same as saying that Kraken is lagging behind Bitstamp with 11 seconds. The two functions on 

the first line are only skewed to different directions because different series are chosen as X variable 

and Y variable in the Hayashi-Yoshida estimator. Both functions indicate that Kraken is a lagging 

exchange, which will be explored further later in the analysis. The two bottom functions show a 

different picture. Bitstamp and Bitfinex have an almost symmetrical function, indicating a weak lead-

lag relationship. The correlation on both sides dies out in the same way, and the maximum correlation 

is found where Bitstamp is lagging 1 second behind Bitfinex. Poloniex and Hitbtc show similar results. 

The pair of these two exchanges is the only one with a maximum correlation at lag 0.  

 

The same four functions are presented in Figure 6.5 below, that zooms in on lags smaller than 10 

seconds. These functions give an even better picture of the observed lead-lag relationships. The two 

functions on the first line are now far from symmetrical around lag 0. The two bottom functions are 

still symmetrical, but Bitstamp and Bitfinex could be said to have a more symmetrical function when 

the zoom is applied on these two pairs. Hence, Bitstamp and Bitfinex could have a less present lead-

lag relationship than Poloniex and Hitbtc, even though the max correlation is at -1 second and not at 

lag 0.  

 

Figure 6.5 - Figure 6.4 zoomed in on only 10 seconds 
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6.2.2.2 LEAD-LAG RELATION SHIPS 
To investigate these relationships further, Table 6.8 presents all 21 pairs with the maximum correlation, 

at which lag (given in seconds) this correlation occurs, and the strength of the lead-lag relationship 

(Lead-Lag Ratio). That is, tests where the Y series is adjusted 60 seconds lagging and 60 seconds 

leading for each timestamp of the X series. The same results for 10 lags can be seen in Table 6 in the 

Appendix. Due to the high number of pairs, all results will not be described. However, some of the 

most interesting results will be elaborated on.  

 

Starting with the pairs that are presented through their functions in Figure 6.4, noticeable differences 

can be found. Kraken and Bitfinex have a lead-lag ratio of 0.3684. As described in Section 4.8, this 

ratio represents the asymmetry of the cross-correlation function. A ratio of 1 would indicate that 

weights on each side of lag 0 in the cross-correlation function are precisely the same, i.e. the sum of 

the correlations are the same on each side. The lead-lag ratio of 0.3684 indicates a strong leading 

relationship for Bitfinex, and that Bitfinex correlates more with lags of Kraken, then the other way 

around.  

Table 6.8 - Results from the Hayashi-Yoshida cross-correlation estimator. 

This show the maximum correlation, the time lag where it occurs, and the lead-lag ratio. 

X Y Seconds Correlation LLR 
Binance Bitfinex -1  0.01741  0.8109  
Binance Bitstamp -3 0.01325 0.8574 
Binance Coinbase -1 0.01804 1.1971 
Binance Hitbtc  2 0.03707 1.6134 
Binance Kraken 15 0.01829 2.2693 
Bitstamp Bitfinex -1 0.01612 1.0158 
Bitstamp Hitbtc 4 0.03877 1.7373 
Bitstamp Kraken 11 0.02186 2.3919 
Coinbase Bitfinex -2 0.03292 0.6219 
Coinbase Bitstamp -1 0.03620 0.5351 
Coinbase Hitbtc 3 0.08644 1.2911 
Coinbase Kraken 8 0.04584 1.6734 
Hitbtc Bitfinex -3 0.02954 0.6121 
Hitbtc Kraken 8 0.03738 1.6509 
Kraken  Bitfinex -12 0.01231 0.3684 
Poloniex Binance -7 0.00170 0.6536 
Poloniex Bitfinex -7 0.01157 0.5163 
Poloniex Bitstamp -7 0.01284 0.5284 
Poloniex Coinbase -5 0.01449 0.6936 
Poloniex Hitbtc 0 0.03640 0.8333 
Poloniex Kraken 4 0.01983 1.1971 
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Even more remarkable is the results of Bitstamp and Kraken. As the function in Figure 6.4 presents, 

Bitstamp is leading Kraken, with a fat tail on the right, indicating that the correlation between 

Bitstamp and lags of Kraken die out slowly. There is actually a lot of correlation left even when 

Bitstamp is leading Kraken with 60 seconds. This is also reflected in the result from Table 6.8, with a 

lead-lag ratio of 2.3919. However, the maximum correlation between the exchanges is not among the 

highest of the 21 pairs and could indicate that the lead-lag relationship will be difficult to make a profit 

on when a trading strategy is applied. 

 

Moving on to Bitstamp and Bitfinex, the results are different. The function looks almost entirely 

symmetrical, indicating a weak lead-lag relationship. The lead-lag ratio is indicating the same, with a 

value of 1.0158. This value indicates that Bitstamp is leading Bitfinex, but the maximum correlation 

is found when Bitfinex is leading Bitstamp with one second. The results for only 10 lags support that 

Bitfinex is the leading exchange, with a lead-lag ratio of 0.9782. Hence, the result is sensitive to the 

number of lags included. Due to the symmetrical function, small changes in lags included will affect 

the lead-lag ratio, as the weights on both sides are almost identical. Moreover, the correlation is 

relatively weak for this pair. Overall, the results for these two exchanges are satisfying. The trading 

activity is significantly higher for Bitfinex, having over 30 million trades in 2018 compared to 

Bitstamp’s 10 million trades. Hence, the credibility of the HY estimator is strengthened as it doesn’t 

automatically yield the exchange with the highest trading activity to be the leading one. The last pair 

of Poloniex and Hitbtc show similar results. The function with 60 lags looks symmetrical; however, the 

correlation dies out slower when Hitbtc is leading Poloniex. The function where only 10 lags are 

included shows this even more explicit, where the correlation stays higher when Hitbtc is leading 

Poloniex. The lead-lag ratio is below 1 for both tests, indicating that Hitbtc is leading Poloniex. 

However, these two exchanges are the only pair that has a maximum correlation at lag 0. This means 

that the exchanges correlate the most when no adjustments are made and whne there theoretically is 

no lead-lag relationship. 

 

Moreover, Coinbase and Hitbtc have a maximum correlation that is way above the other pairs, with 

0.08644. This occurs when Coinbase is leading Hitbtc with 3 seconds. The function for this pair is 

almost symmetrical and shows that the correlation is nearly the same for the lags from -1 to 4. This 

points towards a pair that is relatively highly correlated, where it stays high throughout several seconds. 
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Even though the lead-lag ratio 1.2911 for 60 lags and only 1.1061 for 10 lags, this could be an interesting 

pair to test through a trading strategy. 

 

6.2.2.3 DISCUSSION  OF RESULTS 
The 21 pairs presented in this analysis show different characteristics. This section discusses some of 

the highlights and trends that are found between all the pairs. This discussion is a central part of 

understanding how the bitcoin market works and how the bitcoin prices on the different cryptocurrency 

exchange behave. 

 

6.2.2.3.1 THE EFFICIENCY OF THE LARGEST EXCHANGES 

Binance, Bitfinex and Coinbase are the exchanges with the highest trading activity during 2018. 

Although Binance had around 3 times the number of trades compared to the two other exchanges, 

these three stand out from the rest of the exchanges. Binance and Bitfinex are clearly the exchanges 

with the highest volume as well, with 13.3 million and 12.8 million bitcoin traded in 2018, respectively. 

They are followed by Coinbase with almost 5 million bitcoin traded. As seen from Table 6.8, the 

maximum correlation occurs at 1 second for all these pair, except for one pair that has the maximum 

correlation at 2 seconds. Furthermore, these pairs show lead-lag ratios that are closer to 1 than most 

of the other pairs. Overall, these results are satisfying and also as expected. It would be strange if the 

largest bitcoin exchanges in the world showed significant differences in price movement, and hence 

provided substantial arbitrage opportunities. When the HY estimator provides results that point 

toward the fact that the largest cryptocurrency exchanges are more efficient than the smaller ones, 

with less pronounced lead-lag relationships, this strengthens the credibility of the approach.  

 

6.2.2.3.2 KRAKEN AS THE LAGGING EXCHANGE 

The behavior of one exchange needs to be discussed. Kraken is the exchange with the lowest trading 

activity. However, the overall volume is around 2.4 million bitcoin in 2018, which is higher than 

Poloniex with only 0.8 million bitcoin traded. Almost all pairs that include Kraken show that the 

exchange is lagging the other exchange with around 10 seconds. Poloniex and Kraken are a bit different, 

with a lead-lag ratio closer to 1, and only 4 seconds lead for Poloniex. 4 seconds is still more than the 

efficient exchanges mentioned above, and Kraken can be said to behave differently than other 
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exchanges. The cross-correlation functions that include Kraken are presented below in Figure 6.6. These 

show that when the correlation is higher when Kraken is lagging behind, i.e. the correlation dies slower. 

 

Figure 6.6 - All cross-correlation functions where Kraken is included. 

This leads to the discussion of why this is the case. An initial look at the characteristics of the different 

exchanges points toward the low trading activity. However, the Hayashi-Yoshida cross-correlation is 

supposed to correct for differences in trading activity, as confirmed in Huth & Abergel (2012). To get 

a deeper understanding of the trading activity effect, one can look at the other exchanges with low 

activity. A natural starting point is Poloniex, with the lowest trading volume and just 2 million trades 

more than Kraken. Poloniex lags precisely 7 seconds behind three of the biggest exchanges that all 

vary relatively much in trading activity. Furthermore, Poloniex has a weaker lead-lag relationship to 

Coinbase compared to Bitstamp. As Coinbase has nearly 14 million trades more than Bitstamp, these 

relationships don’t seem to be affected by the trading activity. An interesting observation is that 

Poloniex and Hitbtc show a weak lead-lag relationship, with the maximum correlation at lag 0. 

Moreover, they have approximately the same trading activity, but still totally different trading volume, 

which is noteworthy.  

 

A look at other exchanges should also contribute to a better understanding of the effect of trading 

activity. Hitbtc leads Kraken with 8 seconds, which is the same relationship that Coinbase and Kraken 

show. However, Coinbase has 25 million trades in 2018, compared to Hitbtc’s 9 million trades. 

Furthermore, Hitbtc only lags 2 seconds behind Binance, which has 87 million trades in 2018 and is by 

far the largest exchange. Hitbtc then shows a weaker relationship to Binance, than to the other large 

exchanges. Moreover, Bitstamp shows a leading relationship to Coinbase, that have 15 million trades 

more than Bitstamp in 2018 and a lower overall volume. Hence, no clear trends can be confirmed by 
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just looking at the trading activity. Indeed, smaller exchanges have a lagging relationship to the larger 

exchanges. However, based on the discussion above it is too easy to point at the trading activity as the 

reason for this. One can discuss if the trading volume and activity can explain some of the differences 

that are observed, but no clear trends are seen. Especially when Hitbtc and Poloniex are compared 

with the largest exchanges, trading activity cannot be blamed as the only reason for the presented 

relationships. An interesting discussion could be if the HY-estimator face problems when differences in 

trading activity become too large, or if a lower threshold should be set for trading activity. As a trade 

on Kraken is observed every 4-5 seconds on average in 2018 and Binance show almost 3 trades per 

second, this could certainly affect the results. Nevertheless, Kraken behaves differently than the other 

exchanges and seems to be a decent candidate for a trading strategy based on lead-lag relationships.  

 

6.2.2.3.3 GRANGER CAUSALITY  

Remembering the results in Section 6.2.1.2, all 21 pairs showed a bidirectional relationship. This is in 

accordance with the results from the Hayashi-Yoshida estimator. The Granger causality tests were 

done with 1-minute intervals, whereas the cross-correlations functions presented in this section only 

include 1 minute in total. A comparison of the Granger causality tests with only 1 lag included and 

the cross-correlation functions can be made, as both then represent 1-minute lead-lag relationships. 

When only 1 lag was applied to the Granger causality tests, Poloniex and Bitstamp could not reject 

the null hypothesis that Poloniex does not Granger cause Bitstamp. When studying the cross-

correlation function for this pair with 99% confidence bands, one cannot reject that the correlation is 

zero when Poloniex is leading Bitstamp with around 55-60 seconds, as seen in Figure 6.7. 

 

Figure 6.7 - The cross-correlation function for Poloniex and Bitstamp, with 99% confidence bands included. 
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For most of the pairs that show a relatively low test statistic in the Wald test for Granger causality, 

the same scenario as presented above occur. The correlation drops down to levels around zero when 

the lag move closer to 60. One reason for the fact the Poloniex and Bitstamp are the only pair that 

fail to reject the null hypothesis with 1 lag in the Wald test, could be related to the overall low 

correlation for most of the lags when Poloniex is leading Bitfinex.  

 

To summarize, the bidirectional relationships is in accordance with the calculated cross-correlation 

functions. The HY-estimator gives valuable insight into the details of the lead-lag relationships, even 

when the relationships are bidirectional. This is given by the lead-lag ratio and will be necessary for 

setting up trading strategies later in the analysis. Furthermore, a unidirectional relationship would be 

excepted if the correlation dropped sharply on one side of lag 0 only, indicating low correlation when 

one exchange is leading the other, but higher correlated when the other exchange leads. For setting up 

trading strategies, functions with clear drops on one side of lag 0 in the cross-correlation function would 

be the best. However, this is not the case for any of the pairs in this analysis. The pair of Bitstamp 

and Kraken is perhaps the best example, where the correlation stays quite high for several lags on one 

side of lag 0 and drops faster on the other side. Once again, this leads to the conclusion that Kraken 

should be tested as a lagging exchange in a trading strategy. 

 

6.2.2.3.4 CORRELATION VALUES 

The last discussion of the Hayashi-Yoshida results will be related to the correlation values. The 

observant reader has probably already found the correlation values to be extremely low. The correlation 

matrices presented in the descriptive statistics showed highly correlated price series close to 1, and 

correlations around 0.5-0.7 for the return series. These were based on 1-minute candles, which is quite 

different from the HY-estimator that uses seconds as lags. This is unfortunate for the interpretation of 

the cross-correlations, but there is a logical reason for these low values as mentioned in Section 3.5.3.1. 

The high frequency data used in the HY-estimator include trades every second, or even include several 

trades per second. Naturally, these movements can be extremely small and often totally insignificant 

for the price changes. When every non-zero price variation is included, this leads to a lot of noise in 

the data. These insignificant movements in price could just be noise around a given price level, and 

not indicate a real movement of the price. Furthermore, when analyzing two datasets of high frequency 

trades that are measured in returns from trade to trade, it would be surprising if these return series 

followed the exact same movement. Hence, correlation values become extremely small.  
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To avoid and minimize this microstructure noise, thresholds can be applied. That is, only movements 

that are above a given threshold will be included in the analysis. By doing this, small and insignificant 

movements will be avoided, and the high frequency datasets that are compared will most likely yield 

higher levels of correlation. Huth & Abergel (2012) present a thresholded version of the Hayashi-

Yoshida cross-correlation estimator, to check if substantial returns are more informative than small 

ones.  Their test does indeed yield satisfying results. Overall, the trend is that the lead-lag relationship 

becomes more and more pronounced as the focus moves to larges price variations. Both the lead-lag 

ratio and the maximum correlation increases with the given threshold. When this threshold changes 

from 0.5 to 3, which is determined by the tick size, the maximum correlation seems to double in value. 

However, the most important result from the test is related to the maximum lag. The results show 

that the lag where the maximum correlation occurs is more or less independent of the threshold (Huth 

& Abergel, 2012).  

 

These findings are essential for this thesis. As the end goal is to establish trading strategies, the most 

critical indicator is the maximum lag which indicates the number of seconds an exchange leads another 

exchange. Hence, the results from the HY estimator and the cross-correlation functions can be used to 

build trading strategies, as confirmed by Huth & Abergel (2012). However, when these strategies are 

being built, one should filter out insignificant moves to avoid too much noise and trading fees. 

 

6.2.3 REGRESSION ANALYSIS 

As the previous section presented several lead-lag relationships between the different cryptocurrency 

exchanges, this part of the analysis will try to locate some of the relevant factors that impact these 

relationships. By looking at the effect of information arrival on lead-lag relationships, a deeper 

understanding of why some exchanges lead others will hopefully be achieved. Section 4.9 introduced 

linear regression, which will be used in this part of the analysis. This section will follow the study of 

Dao et al. (2018), which analyzes the effect of information arrival on high frequency lead-lag 

relationships.  

 

6.2.3.1 DEPENDENT VARIABLES 
In the regression analysis, the dependent variables will be related to the lead-lag relationships. That is, 

variables that represent the maximum correlation coefficient, at which time this occur given in seconds, 
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and the lead-lag ratio that measures the strength of the leadership. It is important to include both the 

maximum correlation coefficient and the lead-lag ratio, as they can yield differences in which exchange 

that is leading. The peak of the cross-correlation function can be on one side, but the lead-lag ratio 

can indicate that the correlation is generally higher on the other side. Hence, the two results indicate 

different leading exchange (Dao et al., 2018). These three lead-lag quantities are calculated for each 

day in 2018. That is different from the previous part of the analysis, where these were calculated for 

the whole period. Now, 2018 will include 365 observations with lead-lag characteristics for each day of 

the year. Hence, the pairs of cryptocurrency exchanges that will be tested through the regression 

analysis will have three daily series of lead-lag variables that will be used as the dependent variables 

in the regression analysis.  

 

6.2.3.2 INDEPENDENT VARIABLES 
Section 3.6 highlights the fact that several aspects can affect the lead-lag relationship. Trading 

mechanisms will not be included as bitcoin is electronically traded. Regarding trading cost, this varies 

across the different cryptocurrency exchanges and is not observable due to individual fee structures 

that traders achieve based on trading volume. Hence, this will not be included in the regression analysis 

but will be elaborated on in Section 7.2. However, trading volume will be the key factor to explain 

information arrival to the market that may affect the lead-lag relationships.  

 
All independent variables will be based on the total volume for each exchange per day. The two first 

divide the daily trading volume into block trades and non-block trades, which will be proxies for 

sophisticated and non-sophisticated investors. Remembering from Section 3.6, sophisticated investors 

are institutional investors that provide large blocks of volume. Hence, the non-block volume will be the 

difference between the total daily volume and the volume that is defined as block volume. Block volume 

will be defined as trades of 1 bitcoin or above that size. Letting V, BV and NBV denote the total, 

block and non-block volume, respectively, the following equation is obtained (Dao et al., 2018): 

𝑁𝑁𝑆𝑆𝑉𝑉𝑡𝑡 = 𝑉𝑉𝑡𝑡 − 𝑆𝑆𝑉𝑉𝑡𝑡 

To get even more details from the trading volume, these two volume characteristics are divided into 

the expected and the unexpected component to capture the normal level of market activity and the 

arrival of new information, as found by Arago and Nieto (2005). For a given day, this expected 

component is equal to the volume of the previous day. Hence, the unexpected component is the new 
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volume that occurs, on top of the volume of the previous day. If EBV, UBV, ENBV and UNBV denote 

the expected block, unexpected block, expected non-block and unexpected non-block, the following 

equations can be made (Dao et al., 2018): 

𝑆𝑆𝑆𝑆𝑉𝑉𝑡𝑡 = 𝑆𝑆𝑉𝑉𝑡𝑡−1 

𝑈𝑈𝑆𝑆𝑉𝑉𝑡𝑡 = 𝑆𝑆𝑉𝑉𝑡𝑡 − 𝑆𝑆𝑆𝑆𝑉𝑉𝑡𝑡 

𝑆𝑆𝑁𝑁𝑆𝑆𝑉𝑉𝑡𝑡 = 𝑁𝑁𝑆𝑆𝑉𝑉𝑡𝑡−1 

𝑈𝑈𝑁𝑁𝑆𝑆𝑉𝑉𝑡𝑡 = 𝑁𝑁𝑆𝑆𝑉𝑉𝑡𝑡 − 𝑆𝑆𝑁𝑁𝑆𝑆𝑉𝑉𝑡𝑡  

 

To summarize, the trading volume is now divided into four different components that will be used as 

independent variables in the regression analysis. These represent two dimensions of the trading volume; 

the block and non-block, in addition to the expected and the unexpected.  

 

6.2.3.3 THE OVERALL M ODEL 
Three hypotheses are presented for the regression analysis to explore the effect of trading volume on 

the lead-lag relationships: 

1. The information flow (i.e. unexpected volume) affects the lead-lag relationship (i.e. the 

dependent variables) 

2. Sophisticated investors (i.e. block volume) have a more significant impact on the lead-lag 

relationship than non-sophisticated investors (i.e. non-block volume). 

3. Market leading exchange by volume (i.e. Binance volume) affects the lead-lag relationship of 

other exchanges. 

 

The regression model includes four independent variables that indicate different characteristics of the 

daily volume. The exchange pairs that will be used in the regression analysis are selected based on how 

strong their lead-lag relationships are. When Binance is not included in the regression analysis, the 

model will also include the total volume of Binance. This is to test if the volume of the largest exchange 

is significant for lead-lag relationships, even when this exchange is not a part of the analysis. This could 

provide valuable information on the fact that a dominant exchange in the bitcoin market actually 

impacts the behaviour of smaller exchanges. Furthermore, this provides valuable information on the 

discussion of common cause fallacy that was discussed in Section 6.2.1.3. A separate regression will be 
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estimated for each lead-lag variable, i.e. lead-lag correlation coefficient, lead-lag time and the lead-lag 

ratio. If Y denotes this variable, the regression model can be written as: 

 
𝑌𝑌𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1𝑆𝑆𝑆𝑆𝑉𝑉𝑡𝑡,𝑋𝑋 + 𝛽𝛽2𝑈𝑈𝑆𝑆𝑉𝑉𝑡𝑡,𝑋𝑋 + 𝛽𝛽3𝑆𝑆𝑁𝑁𝑆𝑆𝑉𝑉𝑡𝑡,𝑋𝑋 + 𝛽𝛽4𝑈𝑈𝑁𝑁𝑆𝑆𝑉𝑉𝑡𝑡,𝑋𝑋 +  𝛾𝛾1𝑆𝑆𝑆𝑆𝑉𝑉𝑡𝑡,𝑌𝑌 + 𝛾𝛾2𝑈𝑈𝑆𝑆𝑉𝑉𝑡𝑡,𝑌𝑌 + 𝛾𝛾3𝑆𝑆𝑁𝑁𝑆𝑆𝑉𝑉𝑡𝑡,𝑌𝑌 + 𝛾𝛾4𝑈𝑈𝑁𝑁𝑆𝑆𝑉𝑉𝑡𝑡,𝑌𝑌 + 𝛿𝛿1𝑉𝑉𝑡𝑡,𝐵𝐵𝐼𝐼𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆 
 

The regression analysis will include the four pairs that are presented in the beginning of Section 6.2.2.1, 

which result in 12 different regression models. These pairs have different characteristics in both volume 

and the lead-lag results from the HY-estimator. 

 

6.2.3.4 ASSUM PTIONS 
To provide reliable results in the regression analysis, a look at all assumptions presented in Section 

4.9.1 is important. The goal is to achieve the Best Linear Unbiased Estimator (BLUE) of the 

coefficients. All assumptions are tested for the 12 models in the regression analysis. The results are 

troubling. Nine out of twelve models violate all assumptions except linearity. The other three models 

violate at least two of the assumptions. Table 7 in the Appendix show all tests of assumptions for these 

twelve models. This indicates that the models need to be adjusted. A natural starting point is related 

to the dependent variables. A closer look at these shows troubling results, as they are not stationary 

and seem to include a trend. The plots for the dependent variables are included in Figure 5 in the 

Appendix. One example is included in Figure 6.8 below, showing the values for the maximum 

correlation for the pair of Poloniex and Hitbtc. The logarithmic values of the lead-lag time are spurious 

for some plots and not relevant, as these are undefined for negative values. As seen, the dependent 

variables become stationary when they are transformed to first differenced values. Present for all plots 

is the fact the variance increases over time. 

 

Figure 6.8 - Plots of lead-lag results from Poloniex-Hitbtc. From left: Original values, log values, first-differenced values. 

Based on the discussion above, all dependent variables are transformed into first-differenced values. 

Hopefully, this leads to no violation of the regression assumptions and avoidance of spurious regression. 
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An evaluation of all assumptions will now be presented for the pair of Poloniex and Hitbtc, with lead-

lag max correlation as the dependent variable. The rest of the assumption tests are found in Table 8 

in the Appendix, as all regression models are based on the same type of variables that represent 

exchange volume. However, critical differences in assumption violations between the twelve regression 

models will be addressed. 

 

To check for linearity, all independent variables are plotted against the dependent variable. Figure 6.9 

below shows all scatterplots. The first column to the left shows the dependent variable plotted against 

independent variables and the rest of the matrix show independent variables against each other. If any 

plots look nonlinear, addition augmented partial residual plots are investigated, where the residuals are 

plotted against the independent variable. An example of this is shown in Figure 6.10, with the 

unexpected non-block volume of Hitbtc. The smoothed line is close to the ordinary regression line, and 

there is no evident nonlinearity. This is the case for all independent variables, and the assumption of 

linearity is not violated for the regression models. 

 

  Figure 6.9 - Graph matrix of the pair Poloniex-Hitbtc        Figure 6.10 - Augmented partial residuals plot of UNBV_Hitbtc 

Normality is checked with the use of the Jarque-Bera test. The null hypothesis for the test is that the 

data is normally distributed, and the alternate hypothesis is that the data does not come from a normal 

distribution. As can be seen from Table 8 in the Appendix, the test statistics are above the critical 

values for all regression models, and the null hypothesis is rejected at a 1% significance level. This leads 

to a violation of the assumptions of normality. However, normality is not required in order to obtain 

unbiased estimates of the regression coefficients, as described in Section 4.9.1.1. The third assumption 

of independent residuals is, however, a requirement for OLS regression. This is tested with the use of 

the Durbin-Watson test, where the critical value of the lower band is 1.78182 and the upper band 
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1.87261 for the regression models with 363 observations at a 5% significance level. The test statistic 

for the regression model of Poloniex and Hitbtc with max correlation as dependent variable shows a 

value of 2.753. This as above the critical band value, and the assumption of independent residuals are 

not violated. As seen in Table 8 in the Appendix, this is the case for all regression models. 

 

The fourth assumption is related to the constant variance of the residuals. This is tested with the 

Breusch and Pagan’s test, in addition to plots with the residuals against fitted (predicted) values. As 

seen in Table 8 in the Appendix, the null hypothesis that the variance of the residuals is homogeneous 

is not rejected at a 5% significance level for all regression models, except the pair of Bitstamp and 

Bitfinex with max correlation as the dependent variable. For this regression model, heteroscedasticity-

robust standard errors are applied, as explained in Section 4.9. The last assumption of multicollinearity 

is tested with the VIF-test. As the independent variables are the same for each of the three regression 

models for each pair, all test results are presented below in Table 6.9. A VIF value over 10 is worrying 

and could indicate that the variable is considered as a linear combination of other independent 

variables. The pair of Poloniex and Hitbtc is not violating the assumption of no multicollinearity. 

However, the three other pairs show different results. This is, however, a natural result, as the 

independent variables in this regression analysis are based on the same total volume, and strongly 

correlated exchanges and their volume. Luckily, even extreme multicollinearity (so long as it is not 

perfect) does not violate OLS assumptions. OLS estimates are still unbiased and BLUE (Best Linear 

Unbiased Estimators). Greater multicollinearity leads to greater standard errors. This will affect the 

confidence intervals of the coefficients, which will be wide with small t-statistics (Williams, 2015). 

Hence, it will be more challenging to achieve significant coefficients, and this will be a critical remark 

when evaluating the regression results in the next section. 

Table 6.9 - Test of multicollinearity between all independent variables of the pairs (from left in the table):  
Poloniex-Hitbtc, Bitstamp-Bitfinex, Bitstamp-Kraken and Kraken-Bitfinex 
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Overall, the assumptions for Best Linear Unbiased Estimators are fulfilled, and the transformation of 

the dependent variables to first differenced values yielded satisfying results. 

 

6.2.3.5 REGRESSION  RESULTS  
Table 6.10 represents the regression models for the four pairs, where max correlation and lead-lag ratio 

are the dependent variables. That is, testing the effect of information arrival on the daily lead-lag 

relationships among the four pairs. The results of the regression models for the lead-lag time are 

included in Table 9 in the Appendix since none of the coefficinets in the models showed to be significant.  

Table 6.10 - Regression results – Effect of information arrival on lead-lag relationships 

 

 

Note: Significance on *10%, **5% and ***1% level 
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As expected, the regression models do not provide a high explanatory level. Naturally, the volume 

cannot explain the lead-lag relationships alone, and the R-squared for the regression models are 

relatively low. However, satisfying results are found related to the effect of information arrival. 

According to Panel A and C in Table 6.10, there is evidence that the lead-lag relationships among the 

cryptocurrency exchanges are influenced by the rate of information arrival. This effect is captured by 

the unexpected trading volume on these exchanges and confirms the hypothesis presented earlier. 

Noteworthy is the fact that the only significant variables in every regression model are the ones related 

to the arrival of information, i.e. unexpected volume. A complete overview of all detailed regression 

results can be found in Table 10 in the Appendix. 

 

6.2.3.5.1 DISCUSSION  

Panel A presents the models for the lead-lag correlation coefficient, where all regression models are 

significant on a 1% level. Few coefficients are significant, but some trends can be seen. As already 

explained, only information arrival seems to affect the lead-lag correlation. Furthermore, it seems that 

when this information arrives from sophisticated investors, this will lead to an increase in the lead-lag 

correlation. On the other hand, when unexpected trading activity from non-sophisticated investor 

occurs, the lead-lag correlation seems to decrease. Moreover, it is difficult to conclude anything on the 

effect of information arrival from the leading or the lagging exchanges from Panel A. Poloniex and 

Hitbtc indicate that the leading exchange is the one affecting the lead-lag correlation. However, 

Bitstamp and Kraken show the opposite, where the lagging exchange seems to affect the lead-lag 

correlation more.  

 

It could be tempting to divide the four pairs based on their characteristics. Remembering from Section 

6.2.2.1, both pairs that include Kraken show a strong lead-lag relationship, where Kraken is lagging. If 

the focus in Panel A shifts to only these two pairs, these indicate that the lagging exchange is affecting 

the lead-lag correlation. This is clear for Bitstamp and Kraken, where unexpected volume from Kraken 

is significant for the lead-lag correlation. For Kraken and Bitfinex, the coefficient closest to the 

significance level is the unexpected volume from non-sophisticated investors at Kraken. Although this 

coefficient is not statistically significant, it has a p-value that is much lower than the other coefficients 

in the model, and according to Wasserstein and Lazar (2016), this relative comparison is still valid. 

Even if the coefficients do not match in the direction of the sign, this may overall indicate that 
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information arrival at lagging exchanges affects the lead-lag correlation the most. However, one can 

only conclude that this is purely indications. 

 

Moving on to Panel C, the explanatory level of the regression models decrease a lot, with an R-squared 

ranging between approximately 0.02 and 0.04. None of the regression models is significant on the 5% 

level. However, a discussion based on the significant coefficients is still relevant. Panel C shows the 

regression models where the lead-lag ratio is the dependent variable. This is perhaps the most 

interesting variable, as it states the strength of the lead-lag relationship. Starting with Poloniex and 

Hitbtc, the coefficients for informational arrival of the leading exchange, Hitbtc, are significant at the 

5% level. Once again, the four pairs can be divided based on their characteristics. This indicates that 

the information arrival on the leading exchanges affects the lead-lag relationship when exchanges with 

a weak lead-lag relationship are evaluated. The group of the other two pairs where the lead-lag 

relationship is stronger, show similar results. The unexpected volume on the lagging exchange, Kraken, 

seems to affect the lead-lag ratio for the pair of Bitstamp and Kraken. However, this is only at the 

10% significance level. The pair of Kraken and Bitfinex is in accordance with Poloniex and Hitbtc, 

indicating that the leader affects the lead-lag relationship. For the other coefficients, it is not easy to 

conclude anything by the signs of the significant coefficients. Overall, information flow from leading 

exchanges seems to impact the lead-lag ratio more than information flow from the lagging exchanges.  

 

To summarize this regression analysis, one can look at the hypotheses presented at the beginning of 

the analysis. The hypothesis regarding the information flow was already confirmed early in the analysis. 

All significant variables were related to unexpected volume. The second hypothesis stated that 

sophisticated investors have a more significant impact on the lead-lag relationship. It seems that 

sophisticated investors impact the lead-lag relationship more than non-sophisticated investors. That is, 

in regression models where both investor types showed significant impact, the absolute value of the 

coefficients for block volume is higher. Results of both these hypotheses are satisfying. One would 

assume that new information in the form of unexpected volume would make a more substantial impact 

on these relationships, in addition to the volume from sophisticated investors. Since sophisticated 

investors trade with larger amounts, it is natural that these types of volume changes affect the 

relationships more. This is also in accordance with the findings of Dao et al. (2018,), and could indicate 

that the lead-lag relationships on traditional financial markets and cryptocurrency markets are affected 

by the same type of information arrival. It is noteworthy that several coefficients related to the non-
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block volume are significant. These non-sophisticated investors provide noise to the market due to a 

large number of small trades and are often related to investors whose decisions to buy, sell, or hold are 

irrational and erratic (De Long et al., 1990). These results are satisfying as noise in the sense of a large 

number of trades can be at least as powerful as a small number of large trades (Black, 1986).  

 

The last hypothesis states that the volume on the market-leading exchange will affect the lead-lag 

relationship of other exchanges. The total volume of Binance was included as an independent variable 

in all regression models. This volume did not seem to have a significant impact on the lead-lag 

relationships of any pairs, and the third hypothesis is rejected. Nevertheless, this variable can be used 

to form an interesting discussion. Insignificant results are also results, and both Wasserstein and Lazar 

(2016) and Lopez de Prado (2019) highlight the misuse of p-values and how these significance levels 

can misrepresent the ground truth. P-values furthermore requires strong assumptions, which are not 

always realistic for financial data (Lopez de Prado, 2019). When looking at Panel A, there is not much 

that could indicate how the volume of Binance affects the lead-lag correlation of the pairs. However, it 

can be seen that all Binance coefficients are positive. These coefficients all have to value of zero in the 

figure above, due to the limitation in decimals included. Details of regression results can be seen in 

Table 10 in the Appendix, which shows that all Binance coefficients have a slightly positive value. As 

the volume of Binance can be assumed to be a proxy of the overall bitcoin volume, these results indicate 

that the overall correlations of the different bitcoin prices increase with an overall volume increase. 

Intuitively this makes sense, as higher volume indicates more participants in the market, which lead 

to decreasing spreads and more correctly priced assets (Siegel et al., 2000).  

 

As for Panel C, dividing the pairs into groups will again give new results. When looking at the two 

pairs with strong lead-lag relationships, it is clear that an increase in Binance volume leads to a stronger 

lead-lag relationship. Bitstamp and Kraken have a positive coefficient for Binance volume, which 

increases the lead-lag ratio. As Bitstamp is leading, an increasing ratio strengthens the relationship 

(since it should be above 1). The same effect is seen for the pair of Kraken and Bitfinex, where the 

signs are the opposite. Since Bitfinex is the leader (and the Y variable in the original test in the HY 

estimator), the ratio should be below 1, and a negative coefficient indicates a stronger lead-lag 

relationship. It is vital to mention that the discussion above is solely included to indicate possible 

characteristics of the market. It is not meant to conclude anything about the cryptocurrency markets 

based on statistical significance, which can be a dangerous practice (Wasserstein et al., 2019). 
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6.3 TRADING STRATEGY 

The results from this thesis can be used to build statistical arbitrage strategies that seek to take 

advantage of the temporary imbalance between the bitcoin prices of two cryptocurrency exchanges. 

The Hayashi-Yoshida cross-correlation estimator yielded several strong lead-lag relationships. Some of 

the pairs of exchanges will be used to backtest the possibility of arbitrage between these exchanges. 

Given the assumption that one exchange leads another, information from the leading exchange can be 

used to execute trades on the lagging exchange. That is, given price movements of the leading exchange 

that occur at time 𝑡𝑡 − 1, these movement will occur at the lagging exchange at time 𝑡𝑡. The datasets 

used for backtesting will be for the first two months of 2019. The data includes all trades done in this 

period, including price, volume and the timestamp of the trades. Unfortunately, full order books are 

not accessible. Hence, the trading strategy will be based on mid-quote values. The implications of this 

assumption will be discussed later, as this clearly deviate from a real trading situation. 

 

6.3.1  A SIMPLE FORECASTING STRATEGY 

First, a simple strategy based on the movements of the leading exchange is presented. This “next tick” 

strategy initiates trades on the lagging exchange based on either an upwards movement or a downwards 

movement on the leading exchange. If the leading exchange moves upwards, one bitcoin on the lagging 

exchanges is bought and sold again when the next tick on the lagging exchange occurs. If the leading 

exchange moves downwards, the trade on the lagging will be the opposite, with a short position instead 

of a long position. As the trading activity varies on the two exchanges, the lagging exchange uses the 

last tick movement on the leading exchange that is closest in time to the tick on the lagging exchange. 

This simple strategy is just included to establish a forecasting device on the price movements of the 

two exchanges, to test the accuracy. This will tell if the markets actually behave as the lead-lag 

relationship results indicate. However, this is an extremely unrealistic strategy, as it is based on mid-

quotes and do not include trading fees. A more realistic strategy will be presented in the next section.  

 

Figure 6.11 below shows a test of the first 20 days of February 2019, with Binance as the leading 

exchange and Kraken as the lagging exchange, in addition to a test of Coinbase and Hitbtc. The 

selection of exchanges is simply based on strong and weak lead-lag relationships. Several pairs are 

tested initially, but the two pairs are included to exemplify the differences in forecasting accuracy when 

the lead-lag relationship varies in strength. As seen from Figure 6.11, the simple strategy yields a profit 
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of 2380 USD for the pair of Binance and Kraken. The pair of Coinbase and Hitbtc yields a profit of 

487 USD. However, when trading fees are included these results change to extreme losses, as expected. 

More interesting is the accuracy of the forecast on the lagging exchanges, as the profit is influenced by 

the number of ticks that are traded on the lagging exchange. This varies between the exchanges, as 

confirmed by the two plots in Figure 6.11. Kraken follows Binance with an accuracy of 69.15%, but 

Hitbtc only shows an accuracy of 60.95%. Most of the tested pairs show a forecasting accuracy between 

60% and 70%, depending on the strength of the lead-lag relationships. This indicates that the results 

of the HY approach are trustworthy.   

 

Figure 6.11 – Next tick strategy. Plots of profit in USD, given mid-quote execution and no trading fees.  
Left: Binance and Kraken. Right: Coinbase and Hitbtc. 

6.3.2 ALGORITHM-BASED STRATEGY  

This section presents an attempt of implementing a realistic trading strategy based on lead-lag 

relationships. The main goal of this strategy is to identify when the price difference between the two 

exchanges is high, and open positions based on this. If the difference is above a given threshold, a 

position is opened on the lagging exchange and hold until a profit target is reached. The algorithm for 

the backtesting strategy includes several rules, which operate as requirements for executing trades. 

These are necessary to avoid challenges that occur when trying to implement profitable arbitrage 

strategies. First of all, the algorithm will evaluate the price movements on the leading exchange in a 

given window of time. As the results on the lead-lag relationships yielded lead-lag times of up 15 

seconds, the timeframe will be adjusted after the individual results of the pair. As an example; Coinbase 

and Kraken have a lead-lag time of 8 seconds. In that situation, the logarithm is changed to an interval 

of 10 seconds, to capture the price movements around the time where the lead-lag correlation is highest. 

The interval needs to be reasonably tight, to avoid bias and movements that are not related to the 

lead-lag relationships. 

 

The next rule defines the threshold for the price difference between the exchanges. A common mistake 
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when trading strategies are made is related to the frequency of trades. If the algorithm executes a large 

number of trades, this will, in the end, lead to trading fees surpassing profits. Hence, a threshold needs 

to be implemented to avoid entering non-profitable trades. For this algorithm, the threshold will be 

the same as the profit target, i.e. a predetermined percentage. This percentage threshold is a minimum 

for executing a trade. When the difference between the two exchanges reaches this threshold, a position 

is opened. If the price difference continues to move higher above the threshold, the profit target will 

be updated. This is to avoid opening new positions and instead, stay in the market. When the profit 

target is reached, the algorithm closes the position. Moreover, if the price on the leading exchange 

change direction, the position close immediately before the profit target is reached. An example of a 

successful trade is illustrated below in Figure 6.12. 

 

Figure 6.12 - Example of a successful trade by the algorithm.  

If true lead-lag relationships are found, the prices of the two exchanges will move similar to the example 

above. At a certain point, the price difference of the two exchanges reach the threshold, and a 

long/short position is opened. The lagging exchange will then follow the price movement of the leading 

exchange, and a profit is achieved.  

 

The trading strategy is tested on two pairs with different lead-lag relationships. For both examples, 

the initial investment is 1 bitcoin per trade. As of 0.1.01.2019, that equaled approximately 3,740 USD 

(CoinMarketCap, 2019). The algorithm will take both long and short positions, to take advantage of 

price movements in both directions. The threshold and profit target are set to 0.6%. This level was 

determined after some testing of different thresholds. As describes above, it is important to have a 

threshold that does not open many unprofitable trades. It cannot be too high either, as it will result in 

no trades opened. Hence, the threshold of 0.6% will try to take advantage of large price drops or rises, 

and not profit on small movements. Furthermore, all trading results will be compared with a passive 

buy-and-hold strategy. That is, buying 1 bitcoin at the beginning of the backtesting period and hold 

it until the end of the period. This is important, as the goal is to provide a trading strategy that creates 

a profit superior to the benchmark profit. 
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Figure 6.13 – Plots of profit from algorithm-based trading strategy, where trades are executed at the lagging exchanges. 3 
tests are done for each pair, with different trading fees. The passive buy and hold strategy is also included. 

Figure 6.13 presents the two pairs traded over the period of January through February 2019. For both 

pairs, the profit of the passive buy-and-hold strategy is included. The results are as expected. Different 

levels of trading fees have been included to show how important this is for the profit. The first pair of 

Binance and Kraken have a strong lead-lag relationship. This is reflected in the profit, as the trading 

strategy beats the benchmark when the trading fees are around 0.1%. Binance and Coinbase, which is 

a pair with a weak lead-lag relationship, does not yield a profit even with a trading fee of 0.1%. These 

tests show that when a strong lead-lag relationship is present, the algorithm has more successful trades. 

The algorithm executes 141 trades at Kraken and only 142 at Coinbase. This is a bit surprising, as one 
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would expect that the price differences, and hence the trading opportunities, are more present for 

Binance and Kraken with a strong lead-lag relationship. Moreover, the percentage of the trades that 

yield a profit on Kraken and Coinbase is 77.3% and 73.2%, respectively. The average profit per 

successful trade is 20.4 USD at Kraken and 16.4 USD for Coinbase. Hence, the algorithm stays in the 

positions for a longer period and update the profit target more often at Kraken. The results show that 

the algorithm works better when the lead-lag relationships are strong, which is a satisfying result.  

 

Nevertheless, it is essential to remark that this is just backtesting and can be troubling. The tests 

presented are of a subjectively chosen period, where the bitcoin price did not move much. Moreover, 

the chosen exchange pairs are also subjective. The presented results are reasonable indications of how 

the trading strategy works, but no conclusion can be done based on the results. Backtesting can be a 

successful way to test trading strategies without risking any capital. However, a different sample period 

could reveal other results. These presented pitfalls of backtesting are important to be aware of (Beauty, 

2015). Overall, this section shows that arbitrage opportunities could be possible with relatively low 

trading fees and under the assumption of mid-quote execution. The next section will explore why 

arbitrage can be challenging to achieve, even with theoretically profitable strategies.  

 

6.3.3 LIMITATION OF ARBITRAGE OPPORTUNITIES 

Due to certain constraints and challenges, there is a popular theory in financial markets related to the 

limits of arbitrage. Pricing inefficiencies that arbitrageurs typically trade on may stay in the market 

for an extended period of time (Shleifer and Vishny, 1997). This can explain why prices are different 

across exchanges and are highly relevant in relation to cryptocurrency exchanges. Perhaps the best 

example of this can be seen from South Korean exchanges. The price of one bitcoin is not in accordance 

with the other exchanges across the world, with a significant spread (CoinMarketCap, 2019). However, 

the bitcoin market is highly efficient between the largest exchanges that report real trading volume. 

Today, average spreads on the top 10 spot exchanges by volume range from 0.01% and 0.10%, and are 

constrained from falling lower primarily due to exchange fees and tick sizes (Bitwise Asset Management, 

2019). Overall, this makes arbitrage cross-exchange trading of bitcoin prices nearly impossible on these 

exchanges. However, the algorithm-based trading strategy in this thesis seeks to find situations where 

the price spread of the exchanges deviates from these average levels. These deviations do happen 

according to the results of the HY-estimator. Since some exchanges lead others, significant movements 

in price results in a wider spread for a limited period of time. The HY-estimator indicate that price 
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movements happen 10-15 seconds later at lagging exchanges. Relying on real lead-lag relationships, the 

lagging exchanges will follow the same movement as the leading exchanges, and arbitrage opportunities 

arise. The trading results above show how these opportunities yield profits. However, there are other 

implications that limit these opportunities for arbitrage. These are mainly related to risk and costs. 

The effect of trading fees is somewhat avoided by the threshold of the algorithm-based strategy, but 

the results showed that this is far from enough to deal with this problem. Trading fees are high at 

cryptocurrency exchanges and are the main reason for the limit of arbitrage opportunities. Moreover, 

there typically are fixed costs by setting up the right infrastructure for this kind of high frequency 

trading. That is, cloud subscriptions to servers and other services, to enable the fastest execution time 

possible. 

 

There are several elements of risk with the presented trading strategy. High liquidity is necessary when 

implementing the arbitrage strategies, as this improves the bid/ask spreads and result in efficient 

pricing. Moreover, high liquidity makes the order book ticker. That is, more buyers and sellers available 

at, or close to, the current price. This is where the theory of price slippage and execution risk need to 

be discussed. Price slippage means that a trade is not executed at the observed (best) price. This can 

happen both when entering and exiting a position. As the algorithm trade with market orders, which 

execute at the current price, the possible profit may disappear. In the fraction of a second it takes for 

an order to reach the exchange, something may change, or the quote could be slightly delayed (Mitchell, 

2019). Furthermore, the trade size can cause price slippage. It could be that the volume at the required 

price is not enough to maintain the current bid/ask spread. Hence, trades can be executed at the 

second-best price, and the potential arbitrage profit vanishes. The strategies are based on a trade size 

of 1 bitcoin. The historical volume data, especially from Kraken, is troubling for the trade size. The 

risk of price slippage seems to be quite high in Kraken, as several minute intervals in the backtesting 

period did not show a volume of 1 bitcoin. Hence, this liquidity will most likely cause price slippage, 

and trouble with executing at the desired price. Implementing this strategy with Kraken as the lagging 

exchange will most likely see a much lower roof for trade size and generate a low profit in absolute 

values. However, as the historical 1-minute volume at Kraken shows spikes when the price is moving 

rapidly, it could be a possibility for trading with 1 bitcoin as trade size. To summarize, individual 

investors may possibly make profits, both in percentage and absolute terms. However, for a large 

investment firm, the low volume at some of the lagging exchanges will minimize the possibility for 

scaling, and the arbitrage strategy could be of no use for institutional investors. 



7. DISCUSSION  

72 

7 DISCUSSION 

This section of the thesis is important to understand the reasons behind the results in the analysis. 

Several thought-provoking results are presented, with strong lead-lag relationships in the bitcoin 

market among the largest cryptocurrency exchanges. As described, these exchanges are highly efficient. 

What aspects of the cryptocurrency market could be the cause of these relationships?  

 

7.1 REASONS FOR LEAD-LAG RELATIONSHIPS 

7.1.1 INFRASTRUCTURE 

Probably the most critical factor for a trader is a well-functioning platform. All cryptocurrency 

exchanges have built up their technology and infrastructure and try to offer the best possible 

environment for traders. This is dependent on both how the interface works, but most importantly 

how efficient the technology is. Time is vital in a high frequency trading environment, and customers 

seek exchanges that have reliable and fast platforms. APIs for trading are widely used in today’s 

financial ecosystem and are emerging in the cryptocurrency market. Traders that set up and integrate 

trading strategies through algorithms needs APIs to make this work. In simple terms, an API works 

as a messenger that takes requests and tells a system to do what you want, and finally returns the 

system’s response back to you (Lielacher, 2018). For a trader, APIs allow for direct execution at the 

exchanges, generally based on pre-set algorithmic models. 

 

All cryptocurrency exchanges in this analysis provide APIs to their customers. This is of interest for 

both the exchanges and their customers. Sophisticated traders use these APIs to exploit arbitrage 

opportunities and will over time help the cryptocurrency market to become more efficient and liquid. 

However, cryptocurrency markets are far from established financial markets, and the number of 

institutional investors is relatively small. Especially as regulation of cryptocurrency is still in the 

beginning, institutional money is holding back. Over time, this will probably improve, and the 

development of better and more secure trading APIs will take place. 

 

There is no doubt that the API services that cryptocurrency exchange provides can be part of the 

reason for the lead-lag relationships that are seen. Historically, Kraken has been criticized a lot for its 

infrastructure and service. After months of troubling performance, Kraken updated their infrastructure 
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in 2018. However, this didn’t seem to impress the users, which in fact argued that the service became 

slower and prone to more errors (Buntinx, 2018). Cryptocurrency is a relatively young financial market, 

and building trust is essential. As Kraken’s reputation for sophisticated traders has been challenged, 

this could indicate that they move to other exchanges. As fewer investors make use of their trading 

API to exploit arbitrage opportunities, this could explain some of the lead-lag relationships that are 

seen with Kraken and other exchanges. However, Kraken is one of the oldest cryptocurrency exchanges 

and has never experienced hacks, nor lost any customer assets. The exchange is rank as number one 

on security out of 100 cryptocurrency exchanges, according to the CER Cyber Security Score. Kraken 

outscores both Coinbase and Binance, which are number two and three on the list, on especially server 

security (CER, 2019). The full list can be seen in Table 11 in the Appendix. This shows that simple 

blame of Kraken’s reputation as a single reason for a lead-lag relationship may be slightly unrealistic. 

However, emphasizing exchanges APIs alongside the reputation effect of these as reasons for lead-lag 

relationships, are important.  

 

As this part of the discussion looks at infrastructure, order speed is also necessary to include. Traders 

that are engaged in high frequency trading rely on the speed of execution. Only milliseconds can be 

vital for exploiting arbitrage opportunities and can be the difference between profit and loss. A study 

on order execution, conducted by the cryptocurrency derivate exchange Deribit, included three of the 

exchanges that are analyzed in this thesis (Sedgwick, 2018). The results for Binance, Bitfinex and 

Coinbase are presented in Table 7.1. 

Table 7.1 - Execution delay on Binance, Bitfinex and Coinbase. 

Show the average execution delay (in milliseconds) per trade and the percentage of trades that have a delay above 1 second. 

    Average > 1 second 

Binance   37.2 ms 
 

1.10% 
 

Bitfinex   156 ms 
 

1.50% 
 

Coinbase   33 ms 
 

0.10% 
 

 

With only 33 milliseconds on average and 0.1% of orders taking longer than 1 second, Coinbase had 

the fastest speed of order execution. If a trader is dependent on execution within the frame of a second, 

the trading strategy will fail more often on Binance and Bitfinex, in 1.1% and 1.5% of the cases, 

respectively. This is perhaps not critical for the profit opportunities for the trading strategy in this 

thesis but gives a picture of what traders evaluate when choosing platforms to trade on. Hence, one 
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suggestion can be that sophisticated traders choose exchanges with low execution delay, leading to 

faster price adjustments at specific exchanges. This can possibly explain some of the lead-lag 

relationships that are found between cryptocurrency exchanges.  

 

7.1.2 FEE STRUCTURE 

Another aspect of the different cryptocurrency exchanges is the fee structures. That is, the cost of 

executing a trade. A general approach on cryptocurrency exchanges is to reward traders based on 

trading volume. All exchanges included in this thesis have trading fees structures based on the average 

monthly trading volume. As an example, Kraken is the most expensive at the first level, with a fee of 

0.26% per trade if a person has traded for less than $50,000 in the last 30 days. The cheapest is Binance 

with only 0.1% as a starting fee, and only 0.075% if their own cryptocurrency Binance Coin is used for 

trading fees. The fee level drops to 0.03% at Binance, but that requires a monthly trading volume of 

150,000 BTC (approximately $750 million), which is somewhat unrealistic for most traders. A complete 

overview of taker and maker fees can be seen in Table 12 in the Appendix, and the two first levels of 

all exchanges are presented in Table 7.2 below. Maker fees are not included in the discussion, as the 

maker fee structures follow the changes in taker fee levels for most exchanges. However, remark that 

maker fees are lower, as traders are rewarded for providing liquidity on the exchanges.  

Table 7.2 - Trading fee structures (Taker fee) 

  Level 1 Level 2 

  Fee Volume Fee Volume 

Binance 0.10% < 100 BTC 0.08% < 500 BTC 

Bitfinex 0.20% < $500,000 0.15% < $10 million 

Coinbase 0.25% < $100,000 0.20% < $1 million 

Bitstamp 0.25% < $20,000 0.24% < $100,000 

Poloniex 0.20% < $1 million 0.15% < $20 million 

Hitbtc 0.20% < 100 BTC 0.18% < 2000 BTC 

Kraken 0.26% < $50,000 0.24% < $100,000 

 

As presented in Section 3.6, previous studies indicate that cheaper markets, i.e. futures and options, 

tend to lead spot markets and explain some of the lead-lag relationships. However, this analysis cannot 

make the same conclusion. Binance has a fee structure much lower than any other exchange in this 
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analysis. However, Binance only shows a leading relationship to 4 out of 6 exchanges. It is, in fact, 

showing a lagging relationship to both Bitstamp and Bitfinex, which both have much higher fees. 

Bitstamp showed a leading relationship to all other exchanges but does not have a particularly low fee 

structure compared to the others. This furthermore weakens the indication that exchanges with low 

trading fees are leading. Overall, it seems that trading fees as the primary reason for lead-lag 

relationship are not likely based on this discussion.  

 

7.1.3 LOCATION 

The bitcoin market is unique. Not only is the same asset traded on different platforms, but they operate 

from totally different locations around the world. Some exchanges do also have restrictions on where 

the customers can be based in the world. This can affect price movements. Moreover, the locations of 

the servers that an exchange use for order matching are also important. The advantage of being close 

to the servers of the exchange can be massive in high frequency trading. Where the matching engines 

of an exchange are located is normally not publicly know. Both Coinbase and Bitfinex offer colocation 

services, where traders pay a premium to get data center space close to the matching engines of the 

exchange. This will lead to considerable advantage in executing as fast as possible (Miller, 2018). 

During 2018 more institutional investor came to the market. These kinds of services started growing, 

and the price variations across exchange fell significantly. Before 2018 these variations could be as high 

as 4.5% and is now down to 0.1% (Godshall, 2018).  

 

There is no doubt that location is important, but how can this be a cause for lead-lag relationships? 

As Binance origin from Hong-Kong, one can perhaps guess that the machine engines are placed in Asia. 

On the other hand, Coinbase is U.S based, and Bitfinex has servers in Switzerland (Banister, 2019). 

Widely divided around the globe, this will lead to differences in execution time and hence price 

movements. The lead-lag relationships in this thesis are on a scale far different from the millisecond 

adjustments that are handled with colocations. Yet, these kinds of different locations of the exchanges 

can be part of the reasons why lead-lag relationships are observed. 

 

There is also reason to discuss the location of the customer group at an exchange. The descriptive 

statistics in Section 6.1 revealed patterns in trading volume. Coinbase showed indications of mostly 

American traders, as the volume clearly dropped down during night hours in the US. Moreover, 
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Coinbase only allows customers from certain countries, which excludes most Asian countries. This can 

also be a part of why lead-lag relationships are seen. 

 

7.1.4 INVESTORS 

The location of an investor was discussed above, but more investor characteristics can also be included. 

The described in Section 6.1 Bitfinex had most trades with a trade size above 1 bitcoin. An exchange 

with a larger group of sophisticated investors can impact the lead-lag relationship. The regression 

analysis in Section 6.2.3.5 revealed that new information arrival from sophisticated investors had the 

most substantial impact. If large blocks of volume come from sophisticated investors on a given 

exchange, the regression analysis indicated that the lead-lag relationship increases. This could be due 

to already discussed aspects, for example, the location of servers of sophisticated traders, i.e. fast 

execution time.  

 

7.1.5 TRADING VOLUME  

All the above-mentioned exchange characteristic can lead to differences in price movements and lead-

lag relationships. This discussion has been highly hypothetical, but can hopeful help understand the 

differences that are seen in today’s bitcoin market. If all the reasons behind lead-lag relationships were 

known, the relationships would probably not exist.  

 

Moreover, could the main reason for most of the lead-lag relationships be due to the trading volume at 

the exchanges? As previously discussed, the HY-estimator should not be biased by the differences in 

trading volume. Yet, the results point toward exchanges with high volume being leading. It could be 

that the results are not affected by these differences, but that the real reason behind the relationships 

is related to volume. Naturally, higher volume indicates more participants in the market and faster-

updated prices, which lead to decreasing spreads and more correctly priced assets (Siegel et al., 2000). 

The trading strategy indicated that the low volume of lagging exchanges caused scaling problems. A 

possible theory of the present lead-lag relationships could be that arbitrageurs do not have the 

possibility to apply scaled arbitrage trading due to the liquidity level on the lagging exchanges. Hence, 

the differences stay in the market, as real limits to arbitrage make it nearly impossible to remove. On 
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a long-term perspective, as cryptocurrency see an increase in trading volume, these arbitrage 

opportunities could possibly be exploited.  

 

The above discussion is merely indications. Nonetheless, it gives an interesting perspective to why lead-

lag relationships are present on efficient exchanges. It is not unlikely that trading volume and activity 

could be a big part of the explanations behind the results in this thesis. However, it is more unlikely 

that this is the only reason.  

  

7.2 A FUTURE PERSPECTIVE  

Most studies on lead-lag relationships focus on futures and spot markets. It is widely agreed that 

futures are the leading component, as noted in the literature review of this thesis. The analysis in 

Section 6 is only based on the relationships that are found between bitcoin spot exchanges exclusively. 

An interesting subject for further research could be the emerging futures market for bitcoin.  

 

During 2018 several well-known companies showed interest in bitcoin. The owner of the New York 

Stock Exchange, Intercontinental Exchange (ICE), will now turn to this new market with a new 

company called Bakkt. Their plan is to launch a custody solution, in addition to an own exchange for 

digital assets, and bitcoin futures that are physically settled. These are three major steps in a market 

that has not seen a lot of large institutional players investing so far. Trusted custody solutions are 

crucial in a new financial market. New institutional investors need to feel that their assets are safe.  As 

cryptocurrency is held with just a private key that contains several letters and numbers, new investors 

are skeptical. This is not without reason, with several large cryptocurrency exchanges being hacked 

throughout the last years. A typical procedure is to send cryptocurrency from an exchange to a wallet, 

that usually is a more secure place for storage. Hence, trusted services for custody of cryptocurrency is 

essential for the development of the cryptocurrency market (Arcane Crypto, 2019).  

 

Moreover, the launch of a cryptocurrency exchange will most likely lead to more institutions entering 

the market. When the owner of the largest stock exchange in the world launches a platform for 

cryptocurrency, this will be a signal to institutional investors. Perhaps the most exciting part of the 

plans of ICE is the plan to launch bitcoin futures. As mentioned, these are physically settled. That 

means physical delivery of bitcoin at the expiration day of the contracts. The bitcoin futures that are 
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on the market today are cash settled, meaning no actual transactions of bitcoin. Physically settled 

bitcoin futures will be the first of its kind in the cryptocurrency space, and the trading volume of 

bitcoin is expected to rise (Aki, 2008). 

  

CBOE is the primary provider of bitcoin futures today. The daily volume is approximately the same 

as the volume of the largest cryptocurrency exchange, Binance (Bitwise Asset Management, 2019). 

When Bakkt launches its new bitcoin product, it is likely that trading of bitcoin futures will increase 

due to the inflow of money from institutional investors. This gives rise for further research from the 

thesis. After the launch, the bitcoin market will probably have three main components; spot exchanges, 

cash-settled futures and physically settled futures. Hence, a study on the lead-lag relationships between 

these three markets can be investigated.  

 

Remembering the aspects of the discussion in the previous sections, some of these are even more 

interesting in future research. The financial markets today are highly efficient, and high frequency 

trading is on a totally different level than what is seen in the cryptocurrency markets. A future situation 

with new bitcoin markets that are mostly traded by institutional investors will most likely increase the 

number of arbitrageurs and investors seeking opportunities through high frequency trading. This will 

not only lead to new and improved infrastructures on the new platforms but also challenge the 

cryptocurrency exchanges that are present today. Investors will seek the platforms that have the highest 

order speed, the best and most reliable APIs, and the best colocation services.  

 

The Hayashi-Yoshida cross-correlation estimator has shown reliable results in previous studies where 

lead-lag relationships are found down to milliseconds in traditional financial markets. Hence, continuing 

this study at a future time would be highly interesting and recommended. The bitcoin environment 

could look totally different, with new trading platforms in place, higher volumes, and more arbitrageurs 

trying to exploit profitable trading strategies. The trading strategy presented in this thesis has certain 

scaling issues due to the low volume of the lagging exchanges. How this strategy would work in a future 

situation where the overall market volume has increased, could also be interesting to look at. This 

future institutionalization of the bitcoin market will moreover move the seemingly untouched research 

area of lead-lag relationships in bitcoin markets closer to previous research results of high frequency 

lead-lag relationships in traditional financial markets, opening up new opportunities for comparison 

and improvements.   
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8 CONCLUSION 

This thesis investigated the behavior of the bitcoin price in the year of 2018. By analyzing the price 

series of seven cryptocurrency exchanges, several interesting results were found.  

 

The analysis presented two different approaches to lead-lag relationships. First, the seven bitcoin price 

series were analyzed with the use of 1-minute candles. According to expectations, all bitcoin prices 

showed cointegration in the long run. As all price series represent the same asset, different results 

would be troubling. The first part of the analysis was ended with a test of the lead-lag relationships in 

the short-term. All return series were tested in pairs, and all seven exchanges showed bidirectional 

relationships. That is, all observed return series can be used to predict the other series. This confirms 

the existence of lead-lag relationships among the most efficient cryptocurrency exchanges.  

 

The second part of the analysis sought to explain the lead-lag relationships on a deeper level, as the 

first part of the analysis did not provide a satisfactory level of details. This was done by the use of 

high frequency trade data, including all trades done on the given exchanges during 2018. Strong lead-

lag relationships were found, with a time lag time up to 15 seconds. Smaller, less liquid exchanges like 

Kraken showed a lagging relationship to all the other exchanges. The largest and most liquid exchanges 

showed weak lead-lag relationships with each other.  

 

The analysis furthermore confirmed that the presented lead-lag relationships were affected by the 

arrival of new information. Unexpected trading volume, both from sophisticated and non-sophisticated 

investors showed a significant impact on the lead-lag relationships. Volume from sophisticated investors 

had the most substantial impact on the lead-lag relationship. However, non-sophisticated investors also 

had a significant impact on the lead-lag relationships, by providing noise through a large number of 

small trades. 

 

A simple trading strategy was implemented to show the forecasting accuracy of different lead-lag 

relationships. As expected, exchanges with a strong leading relationship were better to forecast the 

movements of the lagging exchanges than pairs with weak lead-lag relationships. This resulted in 

directional accuracy of up to 70%. Furthermore, a more realistic algorithm-based trading strategy was 

implemented. This trading strategy showed profitable trading results under the assumptions of low 
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trading fees and mid-quote executions. However, taking advantage of lead-lag relationships in the 

cryptocurrency market in real life is challenging due to the limits of arbitrage. High trading fees, 

significant risk of price slippage and scaling problems due to low liquidity are the most critical 

challenges. 

 

Several aspects in the cryptocurrency market could affect the lead-lag relationships. The infrastructure 

of an exchange with reliable technology and effective API services could explain why exchanges like 

Kraken are lagging behind. Arbitrageurs prefer well-functioning exchanges with low trading fees. The 

location of the exchanges is also important, and colocation services could play a role. Furthermore, the 

location of investors and the type of investors that have access to a given exchange could also explain 

some of the lead-lag relationships. Finally, the big question is; are these relationships found solely 

because of different trading activity and liquidity at the exchanges? The results of the analysis could 

point towards this explanation. A complete answer to this is most likely related to several aspects, 

both those mentioned in this thesis and other aspects. However, further investigating would be valuable.  

 

As an overall conclusion, the most efficient exchanges indicate that high frequency lead-lag relationships 

are present in the overall bitcoin market. Only the future can tell if this growing financial market will 

become even more efficient. With higher trading activity, more investors and technological 

improvements, the observed lead-lag relationships in this thesis could be eliminated. 
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10 APPENDIX 

10.1 TABLES 

TABLE 1 – DESCRIPTIVE STATISTICS PRICES 

  Mean Median Max Min Std.Dev Skew Kurtosis 
Binance 7,539 6,910 17,175 3,158 2,382 0.999 1.886 
Coinbase 7,522 6,900 17,178 3,130 2,405 1.005 1.865 
Bitstamp 7,525 6,902 17,235 3,124 2,408 1.001 1.835 
Bitfinex 7,552 6,910 17,248 3,215 2,374 1.040 1.937 
Kraken 7,533 6,899 17,212 3,124 2,424 1.016 1.872 
Hitbtc 7,606 7,018 17,204 3,247 2,394 0.975 1.723 
Poloniex 7,543 6,910 17,250 3,158 2,388 1.005 1.897 

 

TABLE 2 – DESCRIPTIVE STATISTICS VOLUME 

  Mean Median Max Min Std.Dev Skew Kurtosis 
Binance 25.31 15.83 1235.77 0 34.2587 6.468 83.132 
Coinbase 9.44 3.05 964.14 0 22.6800 9.039 147.195 
Bitstamp 7.48 2.09 747.43 0 17.9456 8.199 124.039 
Bitfinex 24.41 7.06 6717.52 0 65.3021 13.915 509.697 
Kraken 4.20 0.76 822.83 0 12.3078 12.382 332.795 
Hitbtc 7.88 2.17 Kraken 0 20.3841 7.187 76.291 
Poloniex 1.59 0.16 402.99 0 4.9302 13.921 506.834 

 

TABLE 3 – CORRELATION MATRIX PRICES 

  Binance Bitfinex Bitstamp Kraken Poloniex Coinbase Hitbtc 
Binance 1 0.99978 0.99947 0.99910 0.99987 0.99940 0.99915 
Bitfinex 0.99978 1 0.99968 0.99932 0.99991 0.99962 0.99918 
Bitstamp 0.99947 0.99968 1 0.99950 0.99964 0.99996 0.99910 
Kraken 0.99910 0.99932 0.99950 1 0.99929 0.99950 0.99865 
Poloniex 0.99987 0.99991 0.99964 0.99929 1 0.99958 0.99923 
Coinbase 0.99940 0.99962 0.99996 0.99950 0.99958 1 0.99905 
Hitbtc 0.99915 0.99918 0.99910 0.99865 0.99923 0.99905 1 
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TABLE 4 – CORRELATION MATRIX RETURNS 

  Binance Bitfinex Bitstamp Kraken Poloniex Coinbase Hitbtc 
Binance 1 0.7716 0.6247 0.4744 0.5057 0.7020 0.6537 
Bitfinex 0.7716 1 0.6937 0.5438 0.5667 0.7670 0.7328 
Bitstamp 0.6247 0.6937 1 0.5015 0.4911 0.6850 0.6059 
Kraken 0.4744 0.5438 0.5015 1 0.4771 0.5663 0.5323 
Poloniex 0.5057 0.5667 0.4911 0.4771 1 0.5556 0.5428 
Coinbase 0.7020 0.7670 0.6850 0.5663 0.5556 1 0.6743 
Hitbtc 0.6537 0.7328 0.6059 0.5323 0.5428 0.6743 1 

 

TABLE 5 – STATIONARITY OF RETURNS SERIES 

Note:  Critical values, 1%: -3.959, 5%: -3.410, 10%: -3.127. Constant and trend are not included based on plots of the return 

series. Lag length is chosen by the use of SBIC. 

  Binance Bitfinex Bitstamp Kraken Poloniex Coinbase Hitbtc 
ADF test statistic -532.76 -521.19 -539.766 -422.72 -370.907 -414.934 -702.8035 
P-value 0 0 0 0 0 0 0 
Lags 1 1 1 2 3 2 0 
H0 Rejected Rejected Rejected Rejected Rejected Rejected Rejected 

 

TABLE 6 – LEAD-LAG RELATIONSHIPS (10 LAGS) 

X Y Seconds Correlation LLR 
Binance Bitfinex -1 0.01741 0.8194 
Binance Bitstamp -3 0.01325 0.9677 
Binance Coinbase -1 0.01804 1.0009 
Binance Hitbtc 2 0.03707 1.1734 
Binance Kraken 7 0.01806 1.4961 
Bitstamp Bitfinex -1 0.01612 0.9782 
Bitstamp Hitbtc 4 0.03877 1.1548 
Bitstamp Kraken 10 0.02184 1.4718 
Coinbase Bitfinex -2 0.03292 0.8111 
Coinbase Bitstamp -1 0.03620 0.7976 
Coinbase Hitbtc 3 0.08644 1.1061 
Coinbase Kraken 8 0.04584 1.3135 
Hitbtc Bitfinex -3 0.02954 0.7696 
Hitbtc Kraken 8 0.03738 1.2554 
Kraken  Bitfinex -8 0.01212 0.6613 
Poloniex Binance -7 0.00269 0.9683 
Poloniex Bitfinex -7 0.01157 0.8252 
Poloniex Bitstamp -7 0.01284 0.8703 
Poloniex Coinbase -5 0.01449 0.9082 
Poloniex Hitbtc 0 0.03640 0.9782 
Poloniex Kraken 4 0.01983 1.1558 
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TABLE 7 – ASSUMPTIONS: ORIGINAL REGRESSION MODEL 

Homoscedasticity – Poloniex and Hitbtc 

Reg 1 (Y= Correlation coefficient) 

 

Reg 2 (Y= Lag time) 

 

Reg 3 (Y= Lead-lag ratio) 

 

Homoscedasticity – Bitstamp and Bitfinex 

Reg 1 (Y= Correlation coefficient) 

 

Reg 2 (Y= Lag time) 

 

Reg 3 (Y= Lead-lag ratio) 
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Homoscedasticity – Kraken and Bitfinex 

Reg 1 (Y= Correlation coefficient) 

 

Reg 2 (Y= Lag time) 

 

Reg 3 (Y= Lead-lag ratio) 

 

Homoscedasticity – Bitstamp and Kraken 

Reg 1 (Y= Correlation coefficient) 

 

Reg 2 (Y= Lag time) 

 

Reg 3 (Y= Lead-lag ratio) 

 

 



10. APPENDIX  

95 
 

Linearity – Poloniex and Hitbtc (Reg 1,2,3 from left) 

   

Linearity – Bitstamp and Bitfinex (Reg 1,2,3 from left) 

   

Linearity – Bitstamp and Kraken (Reg 1,2,3 from left) 

   

Linearity – Kraken and Bitfinex (Reg 1,2,3 from left) 
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Normality – Poloniex and Hitbtc 

Reg 1 (Y= Correlation coefficient) 

 

Reg 2 (Y= Lag time) 

 

Reg 3 (Y= Lead-lag ratio) 

 

Normality – Bitstamp and Bitfinex 

Reg 1 (Y= Correlation coefficient) 

 

Reg 2 (Y= Lag time) 

 

Reg 3 (Y= Lead-lag ratio) 
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Normality – Kraken and Bitfinex 

Reg 1 (Y= Correlation coefficient) 

 

Reg 2 (Y= Lag time) 

 

Reg 3 (Y= Lead-lag ratio) 

 

Normality – Bitstamp and Kraken 

Reg 1 (Y= Correlation coefficient) 

 

Reg 2 (Y= Lag time) 

 

Reg 3 (Y= Lead-lag ratio) 
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Independent residuals – Poloniex and Hitbtc (Reg 1 from top) 

 

 

 

Independent residuals – Bitstamp and Bitfinex (Reg 1 from top) 

 

 

 

Independent residuals – Bitstamp and Kraken (Reg 1 from top) 

 

 

 

Independent residuals – Kraken and Bitfinex (Reg 1 from top) 
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Multicollinearity – Poloniex and Hitbtc 

 

Multicollinearity –Bitstamp and Bitfinex 

 

Multicollinearity – Kraken and Bitfinex 

 

Multicollinearity –Bitstamp and Kraken 
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TABLE 8 - ASSUMPTIONS: ADJUSTED REGRESSION MODELS 

Homoscedasticity – Poloniex and Hitbtc 

Reg 1 (Y= Correlation coefficient) 

 

Reg 2 (Y= Lag time) 

 

Reg 3 (Y= Lead-lag ratio) 

 

Homoscedasticity – Bitstamp and Bitfinex 

Reg 1 (Y= Correlation coefficient) 

 

Reg 2 (Y= Lag time) 

 

Reg 3 (Y= Lead-lag ratio) 
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Homoscedasticity – Kraken and Bitfinex 

Reg 1 (Y= Correlation coefficient) 

 

Reg 2 (Y= Lag time) 

 

Reg 3 (Y= Lead-lag ratio) 

 

Homoscedasticity – Bitstamp and Kraken 

Reg 1 (Y= Correlation coefficient) 

 

Reg 2 (Y= Lag time) 

 

Reg 3 (Y= Lead-lag ratio) 
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Linearity – Poloniex and Hitbtc (Reg 1,2,3 from left) 

   

Linearity – Bitstamp and Bitfinex (Reg 1,2,3 from left) 

   

Linearity – Bitstamp and Kraken (Reg 1,2,3 from left) 

   

Linearity – Kraken and Bitfinex (Reg 1,2,3 from left) 
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Normality – Poloniex and Hitbtc 

Reg 1 (Y= Correlation coefficient) 

 

Reg 2 (Y= Lag time) 

 

Reg 3 (Y= Lead-lag ratio) 

 

Normality – Bitstamp and Bitfinex 

Reg 1 (Y= Correlation coefficient) 

 

Reg 2 (Y= Lag time) 

 

Reg 3 (Y= Lead-lag ratio) 
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Normality – Kraken and Bitfinex 

Reg 1 (Y= Correlation coefficient) 

 

Reg 2 (Y= Lag time) 

 

Reg 3 (Y= Lead-lag ratio) 

 

Normality – Bitstamp and Kraken 

Reg 1 (Y= Correlation coefficient) 

 

Reg 2 (Y= Lag time) 

 

Reg 3 (Y= Lead-lag ratio) 
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Independent residuals – Poloniex and Hitbtc (Reg 1 from top) 

 

 

 

Independent residuals – Bitstamp and Bitfinex (Reg 1 from top) 

 

 

 

Independent residuals – Bitstamp and Kraken (Reg 1 from top) 

 

 

 

Independent residuals – Kraken and Bitfinex (Reg 1 from top) 
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Multicollinearity – Poloniex and Hitbtc 

 

Multicollinearity –Bitstamp and Bitfinex 

 

Multicollinearity – Kraken and Bitfinex 

 

Multicollinearity –Bitstamp and Kraken 
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TABLE 9 – REGRESSION RESULTS: LEAD-LAG TIME AS DEPENDENT VARIABLE 

 

TABLE 10– REGRESSION RESULTS: OUTPUT FROM STATA 

Poloniex and Hitbtc 

 

Bitstamp and Bitfinex 
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Bitstamp and Kraken 

 

Kraken and Bitfinex 
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TABLE 11– THE CER CYBER SECURITY SCORE: CRYPTOCURRENCY EXCHANGES 
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TABLE 12– TRADING FEES 

Binance 

 

Coinbase 

 

Kraken 
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Bitfinex 

 

Bitstamp 
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Hitbtc 

 

Poloniex 
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10.2  FIGURES 

FIGURE 1 – WEEKDAY VOLUME 
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FIGURE 2 – TRADE SIZE DISTRIBUTIONS 
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FIGURE 3 – STATIONARITY PLOTS  

All outputs are collected from Stata. The plots below show prices in log-levels, differenced levelsthe , output of ACF plot for all 525,600 

observations and a sample of 300 observations. The sample is merely included to show how the ACF plot should look, but due to the large number of 

observations the confidence bands are extremely tight and not visible on the original ACF plot. 

Binance 

 

Bitfinex 

 

Bitstamp 

 
Kraken 

 
Poloniex 

 
Coinbase 

 

Hitbtc 
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FIGURE 4 – CROSS CORRELATION FUNCTIONS 

 

 

 



10. APPENDIX  

118 
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FIGURE 5 – PLOTS OF DEPENDENT VARIABLES 

Poloniex and Hitbtc 

 

Bitstamp and Bitfinex 

 

 

Kraken and Bitfinex 
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Bitstamp and Kraken 
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10.3  PYTHON CODE 

 Additional details available upon request. 

STATIONARITY 

 

VECTOR AUTOREGRESSIVE MODEL 
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JOHANSEN COINTEGRATION 
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GRANGER CAUSALITY 

 

 

HAYASHI-YOSHIDA CROSS CORRELATION ESTIMATOR 

Code developed by Philipp Remy. Additional details at: https://github.com/philipperemy/lead-lag  

 

https://github.com/philipperemy/lead-lag
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TRADING STRATEGY 

Code developed by Henrik Skogstrøm. All trading tests done on servers owned by Arcane Crypto AS. 

Additional details: https://github.com/ohenrik/lead_lag_pilot 

Simple next tick strategy 

 

 

 

 

https://github.com/ohenrik/lead_lag_pilot
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Algorithm-based strategy 
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